Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
=>ΔBAE=ΔBHE
ΔBAE=ΔBHE
=>EA=EH
=>ΔEAH cân tại E
a) Xét ∆AHD và ∆FHA có:
^AHD = ^FHA (= 900)
\(\frac{AH}{HD}=\frac{HF}{AH}\)(gt)
Do đó ∆AHD ~ ∆FHA (c.g.c)
⇒ ^HAD = ^HFA
Mà ^HFA + ^FAH = 900 nên ^HAD + ^FAH = 900 ⇒ ^FAD = 900
Vậy ∆ADF vuông tại A (đpcm)
b) Đặt AC = CD = a thì AB = 2a
∆ABC vuông tại A nên BC2 = AB2 + AC2 = (2a)2 + a2 = 5a2 ⇒ \(BC=a\sqrt{5}\)
Ta có: BD = BC - CD \(=a\sqrt{5}-a\Rightarrow BD^2=a^2\left(\sqrt{5}-1\right)^2=a^2\left(6-2\sqrt{5}\right)\)(1)
và AE = AB - BE = AB - BD = AB - (BC - CD) = AB - BC + CD \(=2a-a\sqrt{5}+a=\left(3-\sqrt{5}\right)a\)
\(\Rightarrow AB.AE=2a.\left(3-\sqrt{5}\right)a=a^2\left(6-2\sqrt{5}\right)\)(2)
Từ (1) và (2) suy ra BD2 = AB.AE (đpcm)
Xét \(\Delta\)vuông ABC có \(AB^2+AC^2=BC^2\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{40^2-32^2}=24\left(cm\right)\)
Có E thuộc BC, BE=\(\frac{1}{2}\)BC (vì \(\frac{BE}{BC}=\frac{20}{40}=\frac{1}{2}\))
\(\Rightarrow E\)là trung điểm BC
Lại có \(\Delta ABC\)vuông tại A nên \(AB\perp AC\)
Mà \(EH\perp AB\)\(\Rightarrow EH//AC\)
Xét \(\Delta ABC\)có E là trung điểm BC; \(EH//AC\)
\(\Rightarrow\)HE là đường TB của \(\Delta ABC\)
\(\Rightarrow HE=\frac{1}{2}AC=\frac{24}{2}=12\left(cm\right)\)