Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình nà
a) vì tam giác ABC vuông tại A=> BC^2=AB^2+AC^2( áp dụng đl pytago)
=> BC^2=225+400=625=> BC=25 ( BC>0)
ta có sABC= sABH+sACH=AH*(BH+CH)/2=15*20/2 ( sABC= AB*AC/2)
=> AH*25/2=300/2=> AH=12
b) D đối xứng B qua H=> BH=DH=> H là trung điểm mà AH vuông góc BD tại H=> tam giác ABD cân A => ABD=ADB
vì ADCE là hbh=> DC//AE=> AE//BC=> AECB là hình thang
AD//EC=> ADB=ECD=> ECD=ABD và ABCE là hình thang=> ABCE là hình thang cân
c) ta có BH^2=AB^2-AH^2=225-144=81=> BH=9 ( BH>0)
=> BD=18 cm=> DC=25-18=7 cm=> AE=7 cm ( ADCE là hbh)
d) s ABCE= AH*(AE+BC)/2=12*32/2=192 (cm^2)
Đầu tiên bạn chứng minh \(\Delta AHC\infty\Delta BAC\left(g.g\right)\Rightarrow\frac{AC}{BC}=\frac{HC}{AC}\)
Hay \(\frac{20}{25}=\frac{AH}{15}\) .Tính được AH = 12 cm.
Áp dụng định lí pitago , ta tính được BH = 9 cm nên HD = 9 cm
\(BH+HD+DC=BC\Rightarrow9+9+DC=25\Rightarrow DC=7cm\)
AEDC là hình bình hành(gt) \(\Rightarrow AE=DC=7cm\)
Diện tích hình ABCE là:
\(\frac{\left(AE+BC\right).AH}{2}=\frac{\left(7+25\right).12}{2}=192\left(cm^2\right)\)