Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nối DA. Ta thấy ngay \(\Delta BDI=\Delta BFI\left(c-g-c\right)\Rightarrow\widehat{BDI}=\widehat{BFI}\Rightarrow\widehat{ODI}=\widehat{OFI}\)
Lại có \(\widehat{OFI}=\widehat{OEF}\) (Do OE = OF)
Vậy nên \(\widehat{ODI}=\widehat{OEI}\) hay tứ giác DOIE nội tiếp. Vậy \(\widehat{DIO}=\widehat{DEO}=45^o\) (CM được ADOE là hình vuông)
Do \(\Delta BDI=\Delta BFI\left(c-g-c\right)\Rightarrow\widehat{BID}=\widehat{BIF}\)
Vậy \(\widehat{BIF}=45^o\)
b) Nếu AB = AM thì DE // BM . Khi đó \(\widehat{EHM}=\widehat{DEH}=\widehat{DEO}+\widehat{OEF}=45^o+\widehat{OEF}=\widehat{BIF}+\widehat{OFE}=\widehat{BOF}\)
Lại có \(\widehat{BHF}=\widehat{EHM}\Rightarrow\widehat{BHF}=\widehat{BOF}\) hay BOHF là tứ giác nội tiếp. Vậy \(\widehat{BHO}=90^o\)
Do AB = AM nên OB = OM . Vậy OH là đường cao đồng thời trung tuyến. Vậy H là trung điểm BM.
Suy ra AH là phân giác góc A hay \(\widehat{BAH}=45^o=\widehat{BIH}\Rightarrow\) ABHI là tứ giác nội tiếp.
c) PQ là dây cùng của đường tròn đường kính DM nên PQ lớn nhất khi DM lớn nhất. Vậy gọi N là điểm đối xứng với D qua O. Khi M là giao điểm của BN với AO thì PQ lớn nhất. Khi đó PQ = EF.
1. Vì BD, BF là các tiếp tuyến của (O) nên OD ⊥ BD, OF ⊥ BF.
Xét 2 tam giác vuông OBD và OBF có
O B chung OBD=OBF(gt) = > Δ O B D = Δ O B F (cạnh huyền–góc nhọn)
⇒ BD = BF
Mà OD = OF = r nên OB là trung trực của DF ⇒ OB ⊥ DF ⇒ ∆ KIF vuông tại K.
Mà OD = OF = r nên OB là trung trực của DF ⇒ OB ⊥ DF ⇒ ∆ KIF vuông tại K. D O E = 90 o
Theo quan hệ giữa góc nội tiếp và góc ở tâm cho đường tròn (O), ta có:
D F E = 1 2 D O E = 45 o
⇒ ∆ KIF vuông cân tại K.
=>BIF=45o
4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.
Vì N là điểm chính giữa cung nhỏ BC nên DN là trung trực của BC nên DN là phân giác B D C ^
Ta có K Q C ^ = 2 K M C ^ (góc nọi tiếp bằng nửa góc ở tâm trong dường tròn (Q))
N D C ^ = K M C ^ (góc nội tiếp cùng chắn cung N C ⏜ )
Mà B D C ^ = 2 N D C ^ ⇒ K Q C ^ = B D C ^
Xét 2 tam giác BDC & KQC là các các tam giác vuông tại D và Q có hai góc ở ⇒ B C D ^ = B C Q ^ do vậy D, Q, C thẳng hàng nên KQ//PK
Chứng minh tương tự ta có ta có D, P, B thẳng hàng và DQ//PK
Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng (điều phải chứng minh).
ta có biến đổi góc như sau
\(\widehat{BIK}=\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{B}=\widehat{KAC}+\widehat{IBC}=\widehat{KBC}+\widehat{IBC}=\widehat{IBK}\)
=> tam giác BKI cân tại K nên KB =KI = KC
Hay K là tâm đường tròn ngoại tiếp tam giác IBC
a) Do E , F là các tiếp điểm của (I) zới AC , AB nên \(\widehat{EFD\:=}\widehat{CED},\widehat{FED}=\widehat{BFD},EF//PQ\)
=>\(\widehat{EFD}=\widehat{AQF},\widehat{FED}=\widehat{APE}.\) mặt khác \(\widehat{PEA}=\widehat{CED},\widehat{AQF}=\widehat{BFD}\)suy ra tam giác FQA\(_{\simeq}\)tam giác PEA (g.g)
=>\(\frac{QA}{EA}=\frac{AF}{AP}=>AP.AQ=AE.FA=AE^2\)
hay \(\frac{BK\left(AB+AC\right)}{BC}\ge2BK\Leftrightarrow\frac{AB+AC}{BC}\ge2\)khi tam giác ABC đều thì \(\frac{AB+AC}{BC}=2\). Zậy GTNN của\(\frac{AB+AC}{BC}=2\)
b)ÁP dụng dịnh lý Ptolemy cho tứ giác ABKC
ta có \(AK.BC=AB.Ck=Bk\left(AB+AC\right)\)
tam giác AOD cân \(\widehat{AOI}\le90^0\Leftrightarrow IA\ge IK\Leftrightarrow IA+IK\ge2IK\Leftrightarrow AK\ge2IK\)suy ra\(\frac{BK\left(AB+AC\right)}{BC}\ge2IK\)
thầy cô tích cho em di ạ . em cố gắng để giải bài này r
Vì DPN+DQN=90o+90o=180o nên DPNQ là tứ giác nội tiếp
=>QPN=QDN (hai góc nội tiếp cùng chắn cung QN) (5)
Mặt khác DENF là tứ giác nội tiếp nên QDN=FEN (6)
Từ (5) và (6) ta có FEN=QPN (7)
Tương tự ta có: EFN=PQN (8)
Từ (7) và (8) suy ra Δ N P Q ~ Δ N E F ( g . g ) = > P Q E F = N Q N F
Theo quan hệ đường vuông góc – đường xiên, ta có
N Q ≤ N F = > P Q E F = N Q N F ≤ 1 = > P Q ≤ E F
Dấu bằng xảy ra khi Q ≡ F ⇔ NF ⊥ DF ⇔ D, O, N thẳng hàng.
Do đó PQ max khi M là giao điểm của AC và BN, với N là điểm đối xứng với D qua O.