Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác DAE và tam giác BAC có
DAE = BAC ( đối đỉnh )
AD = AB ( gt)
AE= AC ( gt)
=> tam giác DAE = tam giác BAC
=> BC= DE
b, ta có DAE = BAC = 90 độ ( 2 góc đối đỉnh )
lại có BAD = CAE đối đỉnh
=> BAD=CAE = 360 - (BaC + DAE) tất cả trên 2
<=> BAD= 360 -180 tâts cả trên 2
<=> BAD = 180 trên 2
<=> BAD = 90 độ
=> tam giác BAD vuông lại A
mà AB =AD (gt)
=> BAD vuông cân
=> DBA = BDA = 90 trên 2 = 45 độ
Chứng mình tương tự tam giác CAE vuông cân
=>AEC=ACE= 90 trên 2 = 45 độ
=> DBA=AEC=45 độ
mà chúng ở vị trí sole trong
=> BD // CE
a) Xét Δ ABC và Δ AED, ta có :
(đối đỉnh)
AB = AD (gt)
AC = AD (gt)
=> Δ ABC = Δ AED (hai cạnh góc vuông)
=> BC = DE
Xét Δ ABD, ta có :
(Δ ABC vuông tại A)
=> AD AE
=>
=> Δ ABD vuông tại A.
mà : AB = AD (gt)
=> Δ ABD vuông cân tại A.
=>
cmtt :
=>
mà : ở vị trí so le trong
=> BD // CE
b) Xét Δ MNC, ta có :
NK MC = > NK là đường cao thứ 1.
MH NC = > MH là đường cao thứ 2.
NK cắt MH tại A.
=> A là trực tâm. = > CA là đường cao thứ 3.
=> MN AC tại I.
mà : AB AC
=> MN // AB.
c) Xét Δ AMC, ta có :
(đối đỉnh)
(Δ ABC = Δ AED)
=> (cùng phụ góc ABC)
=> Δ AMC cân tại M
=> AM = ME (1)
Xét Δ AMI và Δ DMI, ta có :
(MN AC tại I)
IM cạnh chung.
mặt khác : (so le trong)
(đồng vị)
mà : (cmt)
=>
=> Δ AMI = Δ DMI (góc nhọn – cạnh góc vuông)
=> MA = MD (2)
từ (1) và (2), suy ta : MA = ME = MD
ta lại có : ME = MD = DE/2 (D, M, E thẳng hàng)
=>MA = DE/2.
a) Xét Δ ABC và Δ AED, ta có :
BAC = CAD = 90 độ (đối đỉnh)
AB = AD (gt)
AC = AD (gt)
=> Δ ABC = Δ AED (hai cạnh góc vuông)
=> BC = DE
Xét Δ ABD, ta có :
BAC = 90 độ (Δ ABC vuông tại A)
=> AD vuông góc AE
=> BAD = 90 độ
=> Δ ABD vuông tại A.
mà : AB = AD (gt)
=> Δ ABD vuông cân tại A.
=> BDC = 45 độ
cmtt : BCE = 35 độ
=> BDC = BCE = 45 độ
mà : BDC, BCE ở vị trí so le trong
=> BD // CE
b) Xét Δ MNC, ta có :
NK vuông góc MC = > NK là đường cao thứ 1.
MH vuông góc NC = > MH là đường cao thứ 2.
NK cắt MH tại A.
=> A là trực tâm. = > CA là đường cao thứ 3.
=> MN vuông góc AC tại I.
mà : AB vuông góc AC
=> MN // AB.
c) Xét Δ AMC, ta có :
MAE= BAH (đối đỉnh)
MEA = BCA (Δ ABC = Δ AED)
=> MAE = MEA (cùng phụ góc ABC)
=> Δ AMC cân tại M
=> AM = ME (1)
Xét Δ AMI và Δ DMI, ta có :
AIM = DIM = 90 độ (MN vuông góc AC tại I)
IM cạnh chung.
mặt khác : IMA = MAE (so le trong)
DMI = MEA (đồng vị)
mà : MAE = MEA (cmt)
=> IMA = IMD
=> Δ AMI = Δ DMI (góc nhọn – cạnh góc vuông)
=> MA = MD (2)
từ (1) và (2), suy ta : MA = ME = MD
ta lại có : ME = MD = DE/2 (D, M, E thẳng hàng)
=>MA = DE/2.
1 đúng nhé
a) Xét tam giác ABC vuông tại A và tam giác ADE vuông tại A có:
AD=AB(gt)
AE=AC( gt)
=>Tam giác ABC=tam giác ADE (2 cạnh góc vuông)
b) Tam giác ABD có: A=900 ; AB=AD (gt)
=>Tam giác ABD vuông cân tại A.
Mk biết làm nhiu đó thui
mình làm tiếp theo câu B nha
chúng minh BD song song CE
ta có góc BCA=ADE(vì hai tam gics DAE=BAC câu a)
và nằm ở vị trí so le trong => DB //CE
còn câu c cái đề hình như bại sai sai sao ó