Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Py-ta-go vào ΔABC vuông tại A ta có:
\(BC^{ }=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC có BD là p/g \(\widehat{ABC}\),theo t/c ta có:
\(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}hay\dfrac{DC}{10}=\dfrac{AD}{6}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{DC}{10}=\dfrac{AD}{6}=\dfrac{DC+AD}{10+6}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
=>\(\left\{{}\begin{matrix}DC=10.\dfrac{1}{2}=5\left(cm\right)\\AD=6.\dfrac{1}{2}=3\left(cm\right)\end{matrix}\right.\)
b) Ta có: \(\widehat{ABD}+\widehat{BDA}=\widehat{BAD}=90^o\)
\(\widehat{DBH}+\widehat{BIH}=\widehat{BHI}=90^o\)
Mà \(\widehat{ABD}=\widehat{DBH}\)(DB là p/g \(\widehat{ABC}\)) ⇒\(\widehat{BDA}=\widehat{BIH}\)
Lại có \(\widehat{AID}=\widehat{BIH}\)( 2 góc đối đỉnh)
⇒\(\widehat{BDA}=\widehat{AID}\)
⇒ΔAID cân tại A
c) Xét ΔABD và ΔHBI có:
\(\widehat{BAD}=\widehat{BHI}=90^o\left(gt\right)\)
\(\widehat{ABD}=\widehat{IBH}\)(BD là p/g \(\widehat{ABC}\))
⇒ΔABD ~ ΔHBI(g-g)
⇒\(\dfrac{AD}{IH}=\dfrac{BD}{BI}\)⇒\(\dfrac{AD}{BD}=\dfrac{IH}{BI}\)
Mà AD=AI(ΔAID cân tại A)⇒\(\dfrac{AI}{BD}=\dfrac{IH}{BI}\Rightarrow AI.BI=BD.IH\left(đpcm\right)\)
a: BC=10cm
Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/5
Áp dụng tính chất của dãy tỉ sốbằng nhau, ta được:
AD/3=CD/5=(AD+CD)/(3+5)=8/8=1
=>AD=3cm; CD=5cm
b: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có
góc ABD=góc HBI
Do đó:ΔBAD đồng dạng với ΔBHI
Suy ra: BA/BH=BD/BI
hay \(BA\cdot BI=BH\cdot BD\)
c: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AID=góc ADI
hay ΔAID cân tại A
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: Xét ΔBAC có BD là phân giác
nen AD/BA=DC/BC
=>AD/3=DC/5=12/8=1,5
=>AD=4,5cm; DC=7,5cm
d: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AID=góc ADI
=>ΔAID cân tại A
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Ta có: ΔHBA\(\sim\)ΔABC(cmt)
nên \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{20}=\dfrac{15}{25}\)
hay AH=12(cm)
Vậy: AH=12cm