Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lg
*Áp dụng định lý py-ta-go ta có: (Δ AHC)
AC2=AH2+HC2
202=AH2+162
400=AH2+256
AH2=144
AH=√144 =12
*Áp dụng định lý py-ta-go ta có: (Δ AHB)
AB2=AH2+BH2
AB2=122+92
AB2=225
AB=√225 =15
△ABC vuông tại A có \(BC^2=AB^2+AC^2\\ \Rightarrow BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
\(\Rightarrow CH=BC-BH=25-9=16\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=25-9=16(cm)
Vậy: CH=16cm
Câu 1:
Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
202 = AH2 + 162
400 = AH2 + 256
AH2 = 400 - 256
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
AC2 = 122 + 52
AC2 = 144 + 25
AC2 = 169
AC = \(\sqrt{169}\)= 13 (cm)
Vậy AH = 12 cm
AC = 13 cm
Bài 2:
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
152 = AH2 + 92
225 = AH2 + 81
AH2 = 225 - 81
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHB vuông tại, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
AB2 = 122 + 52
AB2 = 144 + 25
AB2 = 169
AB = \(\sqrt{169}\)= 13 (cm)
Vậy AB = 13 cm
Xét △BHC vuông tại H có: BH2 + HC2 = BC2 (định lý Pytago)
=> BH2 + 162 = 202
=> BH2 = 202 - 162 = 400 - 256 = 144
=> BH = 12 (cm)
Xét △BHA vuông tại H có: BH2 + AH2 = AB2 (định lý Pytago)
=> 122 + 92 = AB2
=> AB2 = 144 + 81 = 225
=> AB = 15 (cm)
Ta có: AC = AH + HC = 9 + 16 = 25
Xét △ABC có:
AC2 = 252 = 625
AB2 + BC2 = 152 + 202 = 225 + 400 = 625
=> AC2 = AB2 + AC2
=> △ABC vuông tại A
Xét \(\Delta ABH\) có \(\widehat{AHB}=90^0\)
Theo định lí Py ta go ta cs :
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=12^2+9^2\)
\(\Leftrightarrow AB^2=225\)
\(\Leftrightarrow AB=15cm\)
Xét \(\Delta AHC\) có \(\widehat{AHC}=90^0\)
Theo định lí Py ta go ta có :
\(AC^2=HC^2+AH^2\)
\(\Leftrightarrow AC^2=16^2+12^2\)
\(\Leftrightarrow AC^2=400\)
\(\Leftrightarrow AC=20cm\)
b/ Ta có :
\(HB+HC=BC\)
\(\Leftrightarrow BC=9+16=25cm\)
Lại có :
\(AB^2+AC^2=15^2+20^2=225+400=625cm\)
\(BC^2=25^2=625cm\)
\(\Leftrightarrow AB^2+AC^2=BC^2\)
Theo định lí Py ta go đảo thì tam giác ABC vuông tại A
*) Áp dụng định lí Pythagoras vào \(\Delta\)vuông ACH, ta có :
\(\Rightarrow\)AC2 = HC2 + AH2
\(\Rightarrow\)202 = 162 + AH2
\(\Rightarrow\)AH2 = 400 - 256
\(\Rightarrow\)AH2 = 144
\(\Rightarrow\)AH = 12 (cm)
*) Áp dụng định lí Pythagoras vào \(\Delta\)vuông ABH, ta có :
\(\Rightarrow\)AB2 = AH2 + HB2
\(\Rightarrow\)AB2 = 122 + 92
\(\Rightarrow\)AB2 = 225
\(\Rightarrow\)AB = 15 (cm)
Vậy AB = 15 cm; AH = 12 cm
\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
\(AB=\sqrt{9^2+12^2}=15\left(cm\right)\)
\(BC=BH+HC=9+16=25\left(cm\right)\)
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{25^2-20^2}=15\left(cm\right)\)
Áp dụng định lý pitago vào tam giác vuông ABH, có:
\(AB^2=BH^2+AH^2\)
\(\rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)