K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuôg tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*CB

c: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

BH=12^2/20=144/20=7,2cm

HC=20-7,2=12,8cm

d: AD là phân giác

=>DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=20/7

=>DB=60/7cm; DC=80/7cm

29 tháng 3 2023

.

11 tháng 9 2021

\(a,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\left(pytago\right)\)

\(b,\) Vì \(\widehat{BAC}=\widehat{AHB}\left(=90\right);\widehat{ABC}.chung\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)

\(c,\Delta ABC\sim\Delta HBA\left(cm.trên\right)\\ \Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Rightarrow AB^2=BH\cdot BC\)

\(d,\) Vì AD là p/g góc A

\(\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\\ \Rightarrow DC=\dfrac{4}{3}BD\)

Mà \(BD+DC=BC=10\)

\(\Rightarrow\dfrac{4}{3}BD+BD=10\\ \Rightarrow\dfrac{7}{3}BD=10\\ \Rightarrow BD=\dfrac{30}{7}\left(cm\right)\)

 

17 tháng 4 2022

a. áp dụng định lý py-ta-go vào tam giác ABC, ta có:

AB2+AC2=BC2

62+82= BC2

36+64= BC2

BC2=100

BC= 10 (cm)

b. bạn thiếu đề rồi ạ.

21 tháng 5 2021

a) Xét ΔHBA và ΔABC có

\(\widehat{B }\) chung

\(\widehat{BHA}=\widehat{BAC}\)=90o

=> ΔHBA ∼ ΔABC (gg)

b) xét ΔABC có \(\widehat{BAC} \)=90o

=> AC2+AB2=BC2 (đl pitago)

=>162+122=BC2

=> BC=20 cm

Ta có SΔABC=\(\dfrac{AB.AC}{2}=\dfrac{AH.BC}{2}\)

=> AB.AC=AH.BC

=>12.16=AH.20

=> AH=9.6

Xét ΔABH có \(\widehat{BHA}\)=90o

=> HA2+HB2=AB2 (đl pitago)

=>9.62 + HB2=122

=> HB=7.2 cm

c) Xét ΔABC có

AD là phân giác (D∈BC)

=> \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{12}{16}=\dfrac{3}{4}\)(tc đường pg trong Δ)

=>\(\dfrac{BD}{BC-BD}=\dfrac{3}{4}\)=>\(\dfrac{BD}{20-BD}=\dfrac{3}{4}\)

=> BD=\(\dfrac{60}{7}\) cm

=> CD=20 - \(\dfrac{60}{7}\)=\(\dfrac{80}{7}\) cm

d) Xét ΔAHC có

KN // HC (MN//BC , K ∈ MN , H∈ BC,(K∈AH ,N∈AC))

=> \(\dfrac{AN}{AC}=\dfrac{AK}{AH}=\dfrac{KN}{HC}\)( hệ quả đl ta-lét)

=>\(\dfrac{AN}{AC}=\dfrac{3.6}{9.6}=\dfrac{KN}{HC}\)

Xét ΔABC có

MN// BC (M∈AB ,N∈AC)

=> \(\dfrac{AN}{AC}=\dfrac{MN}{BC}\)=>\(\dfrac{3.6}{9.6}=\dfrac{MN}{20}\) => MN =7.5 cm

KH=AH-KH =9.6-3.6=6 cm

Xét tg MNCB có MN//BC 

=> tg MNCB là hình bình hành (dhnb)

có AH⊥BC => KH⊥BC (K∈AH)

=> SBMNC = \(\dfrac{KH.\left(MN+BC\right)}{2}\)=\(\dfrac{6.\left(7.5+20\right)}{2}\)=82.5cm2

16 tháng 5 2015

Tự vẽ hình nha

a) xét tam giác HAB và tam giác ABC

góc AHB = góc ABC

góc CAB : chung

Suy ra : tam giác AHB ~ tam giác ABC ( g-g )

b) Áp dụng định lí py - ta - go vào tam giác ABC ta được :

AC2 + AB2 = BC2

162 + 122 = BC2

400          = BC2

=> BC = \(\sqrt{400}\)= 20 ( cm )

ta có tam giác HAB ~ tam giác ABC ( câu a )

=> \(\frac{AH}{AC}=\frac{AB}{BC}hay\frac{AH}{16}=\frac{12}{20}\)

=> AH = \(\frac{12.16}{20}=9,6\)( cm )

Độ dài cạnh BH là 

Áp dụng định lí py - ta - go vào tam giác HBA ta được : 

AH+ BH2 = AB2

BH2          = AB2 - AH2

BH2             = 122 - 9,62

BH2              = 51,84 

=> BH       = \(\sqrt{51,84}\) = 7,2 ( cm )

c) Vì AD là đường phân giác của tam giác ABC nên :

\(\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{BC-CD}=\frac{AC}{CD}\)

                    <=>   \(\frac{AB.CD}{CD\left(BC-CD\right)}=\frac{AC\left(BC-CD\right)}{CD\left(BC-CD\right)}\)

                    <=>   AB.CD               =   AC(BC - CD)

                    hay   12CD                 =   16.20 - 16CD

                     <=>  12CD+ 16CD      =   320

                     <=>             28CD      =   320

                     <=>                 CD     =    \(\frac{320}{28}\approx11.43\left(cm\right)\)

Độ dài cạnh BD là :

BD = BC - CD

BD = 20 - \(\frac{320}{28}\)\(\approx\) 8,57 ( cm )

16 tháng 5 2015

Cho hỏi đồng dạng là sao bạn???Tớ mới học lớp 7 thôi,nên chưa biết ^^

a: BC=căn 6^2+8^2=10cm

b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

c: BA/BH=BC/BA

=>BA^2=BH*BC

9 tháng 5 2022

 

xét Tam giác HBA và Tam giác ABC có
 B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6

21 tháng 9 2022

xét Tam giác HBA và Tam giác ABC có
 B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6

21 tháng 9 2022

Tự vẽ hình nha

a) xét tam giác HAB và tam giác ABC

góc AHB = góc ABC

góc CAB : chung

Suy ra : tam giác AHB ~ tam giác ABC ( g-g )

b) Áp dụng định lí py - ta - go vào tam giác ABC ta được :

AC2 + AB2 = BC2

162 + 122 = BC2

400          = BC2

=> BC = \sqrt{400}= 20 ( cm )

ta có tam giác HAB ~ tam giác ABC ( câu a )

=> \frac{AH}{AC}=\frac{AB}{BC}hay\frac{AH}{16}=\frac{12}{20}

=> AH = \frac{12.16}{20}=9,6( cm )

Độ dài cạnh BH là 

Áp dụng định lí py - ta - go vào tam giác HBA ta được : 

AH+ BH2 = AB2

BH2          = AB2 - AH2

BH2             = 122 - 9,62

BH2              = 51,84 

=> BH       = \sqrt{51,84} = 7,2 ( cm )

c) Vì AD là đường phân giác của tam giác ABC nên :

\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{BC-CD}=\frac{AC}{CD}

                    <=>   \frac{AB.CD}{CD\left(BC-CD\right)}=\frac{AC\left(BC-CD\right)}{CD\left(BC-CD\right)}

                    <=>   AB.CD               =   AC(BC - CD)

                    hay   12CD                 =   16.20 - 16CD

                     <=>  12CD+ 16CD      =   320

                     <=>             28CD      =   320

                     <=>                 CD     =    \frac{320}{28}\approx11.43\left(cm\right)

Độ dài cạnh BD là :

BD = BC - CD

BD = 20 - \frac{320}{28}\approx 8,57 ( cm )

18 tháng 4 2023

loading...