K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2015

Bạn nhìn hình của cô nhé:

Xét \(\Delta BEN\)\(\Delta BEC\)Ta có:

          BE chung

          góc CEB= góc NBE(do be là phân giác góc B)

=>\(\Delta BEN=\Delta BEC\left(CH-GN\right)\)

=> BN=BC(c.t.ứ)

=>\(\Delta BCN\) cân ở B => góc CNB = góc NCB =\(\frac{180^0-gócABC}{2}\)

bằng cách chứng minh tương tự:

góc AMC=góc ACM = \(\frac{180^0-gócBAC}{2}\)

=> góc AMC + góc CNB =\(\frac{180^0-gócABC+180^0-gócBAC}{2}=\frac{360^0-90^0}{2}=135^0\)(do tam giác ABC vuông ở C)

Mà góc MCN+góc AMC + góc CNB=1800

=>góc MCN =350

27 tháng 5 2015

C B A D E M N 1 2 3

+) Vì AD là phân giác của góc A ; DM là khoảng cách từ D xuống cạnh AB; DC là khoảng cách từD xuống cạnh AC

=> DM = DC

=> tam giác DCM cân tại D 

=> góc C1\(\frac{180^o-CDM}{2}\)

Mà góc CDM là góc ngoài của tam giác DMB => góc CDM = DBM + BMD = DBM + 90o

=> Góc C1\(\frac{180^o-CDM}{2}=\frac{180^o-\left(DBM+90^o\right)}{2}=\frac{90^o-DBM}{2}\) (1)

+) Tương tự, BE là phân giác của góc B 

=> EC = EN => tam giác ACN cân tại E

=> Góc C3\(\frac{180^o-CEN}{2}\)

mà góc CEN = EAN + ANE = EAN + 90o

=> góc C3 = \(\frac{180^o-CEN}{2}=\frac{180^o-\left(EAN+90^o\right)}{2}=\frac{90^o-EAN}{2}\) (2)

+)  góc MCN = 90o - (C1 + C3). Từ (1)(2)

=> Góc MCN =  90o -  (\(\frac{90^o-DBM}{2}\) + \(\frac{90^o-EAN}{2}\) )

= 90o -  \(\frac{180^o-\left(DBM+EAN\right)}{2}\) =  90o -  \(\frac{180^o-90^o}{2}\) = 45o

a) Vì AB // CN (gt)

=> AE //NC 

=> EB//NC

=> MCN = EBM (so le trong) 

Xét ∆EBM và ∆MCN ta có :

BM = MC (M là trung điểm BC )

BME = NMC ( đối đỉnh) 

MCN = EBM (cmt)

=> ∆EBM = ∆MCN (g.c.g)(dpcm)

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

Suy ra: BA=BE và DA=DE

b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

SUy ra: AF=EC và DF=DC (1)

c: Ta có: BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC(2)

Từ (1) và (2) suy ra BD⊥CF