Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AEMC có
AE//MC
AC//EM
Do đó: AEMC là hình bình hành
Suy ra: Hai đường chéo AM và EC cắt nhau tại trung điểm của mỗi đường(1)
Xét tứ giác ABMD có
AD//BM
AB//MD
Do đó: ABMD là hình bình hành
Suy ra: Hai đường chéo AM và BD cắt nhau tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AM,BD,CE đồng quy
a) Có AD // BM (gt), DM // AB (gt) => DA = BM; DM = AB ( tính chất đoạn chắn) (1)
AE // CM (gt); AC // EM (gt) => AE = CM; AC = EM ( tính chất đoạn chắn) (2)
Từ (1) và (2) => AD + AE = BM + CM
=> DE = BC
Xét ΔABCΔABC và ΔMDEΔMDE có:
AB = DM (cmt)
BC = DE (cmt)
AC = EM (cmt)
Do đó, ΔABC=ΔΔABC=ΔMDE (c.c.c)
\(1,BM//AD\Rightarrow\widehat{BMA}=\widehat{MAD};\widehat{BAM}=\widehat{AMD}\\ \left\{{}\begin{matrix}\widehat{BMA}=\widehat{MAD}\\AM.chung\\\widehat{BAM}=\widehat{AMD}\end{matrix}\right.\Rightarrow\Delta ABM=\Delta MDA\left(g.c.g\right)\\ \Rightarrow AD=BM;MD=AB\\ \)
Chứng minh tương tự, ta được \(\Delta ACM=\Delta MEA\left(g.c.g\right)\)
\(\Rightarrow AE=MC;ME=AC\\ \Rightarrow DE=DA+AE=BM+MC=BC\\ \left\{{}\begin{matrix}DE=BC\\AC=ME\\AB=MD\end{matrix}\right.\Rightarrow\Delta ABC=\Delta MDE\left(c.c.c\right)\)
\(b,\)
\(AE//CM\Rightarrow\widehat{OAE}=\widehat{OMC};\widehat{OEA}=\widehat{OCM}\\ Mà.AE=CM\\ \Rightarrow\Delta OAE=\Delta OMC\left(g.c.g\right)\\ \Rightarrow OA=OM\\ AD//BM\Rightarrow\widehat{OAD}=\widehat{OMB}\\ Mà.AD=BM\\ \Rightarrow\Delta OAD=\Delta OMB\left(c.g.c\right)\\ \Rightarrow\widehat{AOD}=\widehat{MOB}\\ \Rightarrow\widehat{BOD}=\widehat{AOD}+\widehat{AOB}=\widehat{MOB}+\widehat{AOB}=\widehat{AOM}=180^0\\ \Rightarrow B;O;D.thẳng.hàng\)
Vì △ABC vuông cân tại A (gt) => AB = AC và ∠ABC = ∠ACB = 45o
Để xy không cắt BC <=> xy // BC <=> DE // BC => ∠ABC = ∠BAD = 45o , ∠ACB = ∠CAE = 45o
Lại có: +) DE // BC (cmt) mà BD ⊥ DE (gt)
=> BC ⊥ BD (từ vuông góc đến song song)
+) DE // BC (cmt) mà CE ⊥ DE (gt)
=> BC ⊥ CE (từ vuông góc đến song song)
Xét △BAD vuông tại D có: ∠BAD + ∠ABD = 90o (tổng 2 góc nhọn trong △ vuông)
=> 45o + ∠ABD = 90o
=> ∠ABD = 45o mà ∠BAD =45o
=> ∠ABD = ∠BAD
=> △ABD vuông cân tại D
=> BD = DA
Xét △CAE vuông tại E có: ∠CAE + ∠ACE = 90o (tổng 2 góc nhọn trong △ vuông)
=>45o + ∠ACE = 90o
=> ∠ACE = 45o mà ∠CAE = 45o
=> ∠CAE = ∠ACE
=> △CAE vuông cân tại E
=> EA = EC
Xét △BCD vuông tại B và △EDC vuông tại E
Có: ∠BDC = ∠DCE (BC // DE)
DC là cạnh chung
=> △BCD = △EDC (ch-gn)
=> BC = DE (2 cạnh tương ứng)
=> BC = DA + AE
=> BD + EC = BC (đpcm)