K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên D là trung điểm của BC

b: Ta có: ΔADC cân tại D

mà DE là đường cao

nên E là trung điểm của AC

TA có: ΔADC vuông tại D

mà DE là đường trung tuyến

nên DE=AC/2=AE

=>ΔEAD cân tại E

mà \(\widehat{DEA}=90^0\)

nên ΔEAD vuông cân tại E

10 tháng 10 2018

27 tháng 12 2022

này là chép mạng mà bro

https://thuvienhoclieu.com/cac-dang-toan-hinh-hoc-7-hoc-ky-1-co-loi-giai/ 

câu 9a

11 tháng 10 2017

9 tháng 5 2021

A B C D

a) Xét ABD và EBD có

        BD cạnh chung

        BAD=BED(=90)

        ABD=EBD(vì BD là tia phân giác của B)

b ko biet

 

9 tháng 5 2021

b)Vì theo ý a) BAD=BED và BD là tia phân giác của B. Nên ADE là tam giác cân

9 tháng 2 2022

a. Xét tam giác  ABD và tam giác ACD

AB = AC ( ABC cân )

góc B = góc C ( ABC cân )

AD : cạnh chung

Vậy tam giác  ABD = tam giác ACD ( c.g.c )

b. ta có trong tam giác ABC đường trung tuyến cũng là đường cao

=> AD vuông BC

CD = BC : 2 = 12 : 2 =6cm

c.áp dụng định lý pitago vào tam giác vuông ADC 

\(AC^2=AD^2+DC^2\)

\(AD=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)

d.Xét tam giác vuông BDE và tam giác vuông CDF có:

AD = CD ( gt )

góc B = góc C

Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền . góc nhọn)

=> DE = DF ( 2 cạnh tương ứng )

=> tam giác DEF cân tại D

9 tháng 2 2022

a) Tam giác ABD và tam giác ACD có:

     BD = CD (Vì D là trung điểm của BC)

     góc B = góc C

                              (vì tam giác ABC cân tại A)

     AB = AC

  Do đó: am giác ABD = tam giác ACD (c.g.c)

   Suy ra: Góc ADB = góc ADC (cặp góc t/ứng)

b) Vì góc ADB = góc ADC (cmt) mà góc ADB +  góc ADC 180 độ (2 góc kề bù)

    nên góc ADB = 180 độ / 2 = 90 độ => AD vuông góc với BC

c) Ta có : BD + CD = BC ( Vì D nằm giữa B và C)

                  mà BC = 12 cm

       => CD = 12 /2 = 6 cm

 Vì AD vuông góc với BC nên tam giác ADC vuông tại D 

   => AC2AC2 = AD2AD2 +CD2CD2 (Định lý Pytago)

    => 10^2 = AD ^ 2 + 6 ^2

   => AD^2 = 64

   => AD = 8 (cm) (vì AD > 0 )

 d) bạn c/m cho tam giác DEB = tam giác DFC (cạnh huyền - góc nhọn) nhé

       => DE = DF (cặp cạnh tương ứng) => tam giác DEF cân tại D( đn)

22 tháng 3 2022

A B C D E F

a)Xét \(\Delta ABD\) và \(\Delta ACD\) có :

    \(BD=DC\)

     \(\widehat{ABD}=\widehat{ACD}\left(\Delta ABCcân\right)\)

     AB= AC

=>  \(\Delta ABD\) = \(\Delta ACD\) (c-g-c)

b) Vì \(\Delta ABC\) cân tại A nên AD vừa là đường trung tuyến vừa là đường cao

=> \(AD\perp BC\)

*Nếu chx học cách trên thì bạn xem cách dưới đây"

Vì  \(\Delta ABD\) = \(\Delta ACD\) nên \(\widehat{ADB}=\widehat{ADC}\)

mà \(\widehat{ADB}+\widehat{ADC}=180^o\)

=> \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^o}{2}=90^o\)

=> \(AD\perp BC\)

c)Xét \(\Delta EBD\) vuông tại E và \(\Delta FCD\) vuông tại F có :

\(\widehat{EBD}=\widehat{FCD}\)

\(BD=CD\)

=> \(\Delta EBD=\Delta FCD\left(ch-gn\right)\)

d) Vì D là trung điểm của BC nên  \(DC=\dfrac{BC}{2}=\dfrac{12}{2}=6cm\)

Xét \(\Delta ADC\) vuông tại D có :

\(AC^2=AD^2+DC^2\)

\(100=AD^2+36\)

\(AD^2=100-36\)

\(AD^2=64\)

AD=8 cm

2 tháng 5 2017

bạn nào giúp mk vẽ hình đc không

27 tháng 2 2020

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC

7 tháng 2 2022

a, Ta có : AD = AB + BD ; AE = AC + CE

mà AB = AC (gt); BD = CE (gt) 

=> AD = AE 

Vậy tam giác ADE cân tại A

Ta có : \(\dfrac{AB}{AD}=\dfrac{AC}{AE}\)do AB = AC; AD = AE(cmt) 

=> DE // BC ( Ta lét đảo ) 

b, Vì ^ABC = ^MDB ( đối đỉnh ) 

^ACB = ^NCE ( đối đỉnh ) 

mà ^ABC = ^ACB ( tam giác ABC cân tại A ) 

=> ^MDB = ^NCE 

Xét tam giác DMB và tam giác ENC có : 

BD = EC (cmt) 

^MDB = ^NCE ( cmt ) 

Vậy tam giác DMB = tam giác ENC ( ch - gn ) 

=> DM = EN ( 2 cạnh tương ứng ) 

=> BM = NC ( 2 cạnh tương ứng ) 

c, Ta có : ^ABM = ^MBC - ^ABC 

^ACN = ^NCM = ^ACB 

=> ^ABM = ^ACN 

Xét tam giác ABM và tam giác ACN có : 

AB = AC (gt) 

^ABM = ^ACN (cmt) 

BM = CN (cmt) 

Vậy tam giác ABM = tam giác ACN ( c.g.c ) 

=> ^AMB = ^ANC ( 2 góc tương ứng ) 

Xét tam giác AMN có : ^AMB = ^ANC (cmt) 

Vậy tam giác AMN cân tại A

7 tháng 2 2022

Bạn vẽ hình giúp mình nha

a. Tam giác ABC cân tại A nên AB=AC

Ta có: AE=AC+CE, AD=AB+BD 

Mà AC=AB, CE=BD

\(\Rightarrow AE=AD\) \(\Rightarrow\Delta ADE\) cân tại A

Xét \(\Delta ADE\) có: \(\dfrac{AB}{BD}=\dfrac{AC}{CE}\)

Áp dụng định lí Ta-let đảo \(\Rightarrow BC//DE\) (đpcm)

Xét \(\Delta BDM\) vuông tại M và \(\Delta CEN\) vuông tại N có:

\(\left\{{}\begin{matrix}BD=CE\\\widehat{MBD}=\widehat{NEC}\left(cùng.bằng.\widehat{ABC}\right)\end{matrix}\right.\)

\(\Rightarrow\)\(\Delta BDM\)=\(\Delta CEN\) \(\Rightarrow\)DM=EN (đpcm)

Kẻ \(AH\perp BC\) \(\left(H\in BC\right)\)

Ta có \(\Delta ABC\) cân tại A nên AH vừa là đường cao vừa là đường trung tuyến

\(\Rightarrow BH=CH\) 

Mà MB=CN (\(\Delta BDM\)=\(\Delta CEN\)\(\Rightarrow AM=AN\)

\(\Rightarrow\Delta AMN\) cân tại A