K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2018

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD

31 tháng 5 2019

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD

7 tháng 12 2021

a) Ta có: AM là đường trung tuyến (gt). => M là trung điểm của BC.

Xét tam giác ABC vuông tại A: AM là đường trung tuyến (gt).

=> AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).

=> AM = MB = MC = \(\dfrac{1}{2}\) BC (do M là trung điểm của BC).

Xét tam giác AMB có: AM = MB (cmt). => Tam giác AMB cân tại M.

Mà MD là đường cao (MD \(\perp\) AB).

=> MD là phân giác ^AMB (Tính chất các đường trong tam giác cân).

Xét tam giác AMC có: AM = MC (cmt). => Tam giác AMC cân tại M.

Mà ME là đường cao (ME \(\perp\) AC).

=> ME là phân giác ^AMC (Tính chất các đường trong tam giác cân).

Xét tam giác MBD và tam giác MAD có:

+ MD chung.

+ MB = AM (cmt).

+ ^BMD = ^AMD (MD là phân giác ^AMB).

=> Tam giác MBD = Tam giác MAD (c - g - c).

=> ^MBD = ^MAD (2 góc tương ứng). 

=> ^MBD = ^MAD = \(90^o\). => BD \(\perp\) AB. (1)

Xét tam giác MAE và tam giác MCE có:

+ ME chung.

+ MC = AM (cmt).

+ ^AME = ^CME (ME là phân giác ^AMC).

=> Tam giác MAE = Tam giác MCE (c - g - c).

=> ^MAE = ^MCE (2 góc tương ứng). 

=> ^MAE = ^MCE = \(90^o\). => CE \(\perp\) AB. (2)

Từ (1); (2) => BD // CE (Từ \(\perp\) đến //).

b) Ta có: DE = DA + AE.

Mà DA = DB (Tam giác MBD = Tam giác MAD).

      EA = EC (Tam giác MAE = Tam giác MCE).

=> DE = BD + CE (đpcm).

 
7 tháng 12 2016

Xét tam giác BDC và CEB có

góc E= góc D=90 độ

góc B= Góc C

BC chung

=> tam giác BDC= tam giác CEB(trường hợp cạnh huyền góc nhọn)

=>góc DBC= góc ECB( hai cạnh tương ứng)

mà góc DBC+DBE=góc EBC

góc ECB+ECD=góc BCD

lại có góc EBC=Góc BCD

=>góc DBE=góc BCD

hay góc IBE= cóc ICD

 

7 tháng 12 2016

c) có BD và CE cắt nhau tại I

mà trong mộ tam giác ba đường cao đồng quy tại một điểm

=>AI là đường cao hạ từ điingr A của tam giác ABC xuống cạnh BC

=>AI vuông góc với BC