K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2020

Mình nghĩ M là trung điểm của BC.

Xét tam giác MAE và tam giác MBD có: MA = MB (do tam giác ABC vuông cân tại A), AE = BD (chứng minh trên), \(\widehat{MBD}=\widehat{MAE}\).

Do đó \(\Delta MAE = \Delta MBD(c.g.c)\Rightarrow MD=ME; \widehat{AME}=\widehat{BMD})\Rightarrow MD=ME; \widehat{EMD}=\widehat{AMB}=90^o\Rightarrow\text{Tam giác MDE vuông cân tại M}\).

 

31 tháng 12 2020

Ta có \(\Delta ADB=\Delta CEA\left(g.c.g\right)\)

\(\Rightarrow BD=EA\).

Do đó \(BD^2+CE^2=EA^2+CE^2=AC^2\) không đổi.

 

18 tháng 6 2016

Bài thiếu đề rồi nha