K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

Bạn vui lòng tự vẽ hình giùm.

a) Tính độ dài BC.

Ta có \(\Delta ABC\)vuông tại A => BC2 = AB2 + AC2 (định lí Pitago) (1)

Mà AB = AC (\(\Delta ABC\)cân tại A) => AB2 = AC2 (2)

Từ (1) và (2) => BC2 = 2AB2

=> BC2 = 2. 42 = 32

=> BC = \(\sqrt{32}\)(vì BC > 0)

b) CM: D là trung điểm của BC

\(\Delta ADB\)vuông và \(\Delta ADC\)vuông có: AB = AC (\(\Delta ABC\)cân tại A)

Cạnh AD chung

=> \(\Delta ADB\)vuông = \(\Delta ADC\)vuông (cạnh huyền - cạnh góc vuông) => DB = DC (hai cạnh tương ứng) => D là trung điểm của BC (đpcm)

9 tháng 4 2020

* Hình bạn tự vẽ xD *

a) Ta có : Tam giác ABC vuông cân tại A

=> AB2 + AC2 = BC2 ( Đ.lí Pytago )

=> 42 + 42 = BC2

=> 16 + 16 = BC2

=> 32 = BC2

=> BC = \(\sqrt{32}cm\)

b) Vì tam giác ABC là tam giác vuông cân tại A => Góc B = góc C ( hai góc ở đáy )

Xét tam giác vuông ADB và tam giác vuông ADC có :

AB = AC ( gt )

B = C ( cmt )

=> Tam giác vuông ADB = tam giác vuông ADC ( cạnh huyền - góc nhọn )

=> DB = DC ( hai cạnh tương ứng )

=> D là trung điểm của BC

( Đến đây thì mình bí r xD )

Sửa đề: ΔABC vuông cân tại A

a) Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=4^2+4^2=32\)

hay \(BC=4\sqrt{2}cm\)

Vậy: \(BC=4\sqrt{2}cm\)

b) Xét ΔADB vuông tại D và ΔADC vuông tại D có

AB=AC(ΔABC vuông cân tại A)

AD chung

Do đó: ΔADB=ΔADC(cạnh huyền-cạnh góc vuông)

Suy ra: DB=DC(hai cạnh tương ứng)

mà D nằm giữa B và C

nên D là trung điểm của BC(đpcm)

c) Ta có: ΔABC vuông cân tại A(gt)

nên \(\widehat{C}=45^0\)(Số đo của một góc ở đáy trong ΔABC vuông cân tại A)

Xét ΔADC vuông tại D có \(\widehat{C}=45^0\)(cmt)

nên ΔADC vuông cân tại D(Dấu hiệu nhận biết tam giác vuông cân)

Suy ra: \(\widehat{CAD}=45^0\)(Số đo của một góc nhọn trong ΔADC vuông cân tại D)

hay \(\widehat{EAD}=45^0\)

Xét ΔEAD vuông tại E có \(\widehat{EAD}=45^0\)(cmt)

nên ΔAED vuông cân tại E(Dấu hiệu nhận biết tam giác vuông cân)

d) Ta có: D là trung điểm của BC(cmt)

nên \(DC=\dfrac{BC}{2}=\dfrac{4\sqrt{2}}{2}=2\sqrt{2}cm\)

mà DC=DA(ΔAED vuông cân tại E)

nên \(AD=2\sqrt{2}cm\)

Vậy: \(AD=2\sqrt{2}cm\)

11 tháng 2 2021

cảm ơn bạn 

 

20 tháng 1 2017

Mình chịu câu b

28 tháng 1 2018

Giải

a) Áp dụng định lí Pytago ta có:

BC=√AB2+AC2

<=> BC= √42+42

<=>BC=4√2(cm)

b) Ta có: AD là đường cao đồng thời là đường trung tuyến ứng với cạnh huyền BC của tam giác ABC

<=>DB=DC

Hay D là trung điểm của BC

c) Áp dụng hệ thức lượng trog tam giác có:

AB.AC=BC,AD

<=>4.4=4√2.AD

<=>AD= 2√2(cm)

Ta có: DC=4√22=2√2(cm)

Vì AD=DC nên tam giác ADC là tam giác vuông cân tại D

Ta có: AC=4(cm) (Áp dụng định lí Pytago trong tam giác ADC)

AE= 42=2(cm) (DE là đường cao đồng thời là trung tuyến của tam giác ADC)

Áp dụng hệ thức lượng ta có: DE=2√2.2√24=2(cm)

Do AE=DE mà góc AED bằng 90 độ

Nên tam giác AED vuông cân tại E

d) Câu trên tớ đã tính AD= 2√2(cm)

Mình giải hơi tắt 1 tí. Bạn thông cảm nhé. :)))

9 tháng 2 2022

a. Xét tam giác  ABD và tam giác ACD

AB = AC ( ABC cân )

góc B = góc C ( ABC cân )

AD : cạnh chung

Vậy tam giác  ABD = tam giác ACD ( c.g.c )

b. ta có trong tam giác ABC đường trung tuyến cũng là đường cao

=> AD vuông BC

CD = BC : 2 = 12 : 2 =6cm

c.áp dụng định lý pitago vào tam giác vuông ADC 

\(AC^2=AD^2+DC^2\)

\(AD=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)

d.Xét tam giác vuông BDE và tam giác vuông CDF có:

AD = CD ( gt )

góc B = góc C

Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền . góc nhọn)

=> DE = DF ( 2 cạnh tương ứng )

=> tam giác DEF cân tại D

9 tháng 2 2022

a) Tam giác ABD và tam giác ACD có:

     BD = CD (Vì D là trung điểm của BC)

     góc B = góc C

                              (vì tam giác ABC cân tại A)

     AB = AC

  Do đó: am giác ABD = tam giác ACD (c.g.c)

   Suy ra: Góc ADB = góc ADC (cặp góc t/ứng)

b) Vì góc ADB = góc ADC (cmt) mà góc ADB +  góc ADC 180 độ (2 góc kề bù)

    nên góc ADB = 180 độ / 2 = 90 độ => AD vuông góc với BC

c) Ta có : BD + CD = BC ( Vì D nằm giữa B và C)

                  mà BC = 12 cm

       => CD = 12 /2 = 6 cm

 Vì AD vuông góc với BC nên tam giác ADC vuông tại D 

   => AC2AC2 = AD2AD2 +CD2CD2 (Định lý Pytago)

    => 10^2 = AD ^ 2 + 6 ^2

   => AD^2 = 64

   => AD = 8 (cm) (vì AD > 0 )

 d) bạn c/m cho tam giác DEB = tam giác DFC (cạnh huyền - góc nhọn) nhé

       => DE = DF (cặp cạnh tương ứng) => tam giác DEF cân tại D( đn)

8 tháng 4 2017

A B C 6 10 D H K

a, Xét \(\Delta ABC\)VUÔNG tại A

Áp dụng định lý pitago ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB^2=BC^2-AC^2\)

\(\Rightarrow AB^2=10^2-6^2\)

\(\Rightarrow AB^2=100-36\)

\(\Rightarrow AB^2=64\)

\(\Rightarrow AB=\sqrt{64}=8\)

VẬY AB=8 cm

b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:

\(\widehat{BAD}=\widehat{BHD}=90độ\)

\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)

\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)

c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)

\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)

lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)

\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)

\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)

Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:

\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)

Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)

\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)

\(\Rightarrow\Delta KBC\) cân tại B

8 tháng 4 2017

uhuhuhu sợ bài này lắm rồi !