Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔBAC vuông tại B có BH là đường cao
nên \(HA\cdot HC=BH^2\left(1\right)\)
Xét ΔBHC vuông tại H có HE là đường cao
nên \(BE\cdot BC=BH^2\left(2\right)\)
Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)
Lỗi nên không vẽ được hình nha bạn !
Bài giải
Kẻ HK \(\perp\)AB tại K ,
Ta có HK//AC ( cùng \(\perp\)AB )
=> \(\frac{BH}{HC}=\frac{BK}{KA}\)( định lí Ta - lét )
Mà \(\Delta BHK\)vuông cân tại K nên BK = HK => \(\frac{BH}{HC}=\frac{HK}{KA}\left(1\right)\)
Mà \(\Delta AKH\infty\Delta CAM\left(g-g\right)\)
\(\Rightarrow\frac{HK}{KA}=\frac{MA}{AC}=\frac{MA}{AB}=\frac{1}{2}\left(2\right)\)
Từ (1) và ( 2 ) => \(\frac{HB}{HC}=\frac{1}{2}\)
d) Ta có: \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow HDAE\) là hình chữ nhật
\(\Rightarrow DE=AH=\sqrt{BH.HC}=\sqrt{4.9}=6\left(cm\right)\)
Ta có: \(DM\parallel EN (\bot DE)\) và \(\angle MDE=\angle DEN=90\)
\(\Rightarrow MDEN\) là hình thang vuông
Vì \(\Delta BDH\) vuông tại D có M là trung điểm BH
\(\Rightarrow MD=\dfrac{1}{2}BH=\dfrac{1}{2}.4=2\left(cm\right)\)
Vì \(\Delta HEC\) vuông tại E có M là trung điểm CH
\(\Rightarrow EN=\dfrac{1}{2}CH=\dfrac{1}{2}.9=\dfrac{9}{2}\left(cm\right)\)
\(\Rightarrow S_{DENM}=\dfrac{1}{2}.\left(DM+EN\right).DE=\dfrac{1}{2}.\left(2+\dfrac{9}{2}\right).6=\dfrac{39}{2}\left(cm^2\right)\)
Câu hỏi của Lê Vũ Anh Thư - Toán lớp 8 - Học toán với OnlineMath
E tham khảo cách làm tại link này nhé!