Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ABC=180-50-70=60 độ
b: Vì góc IBC=1/2*góc ABC
nên BI là phân giác của góc ABC
Vì góc ICB=1/2*góc ACB
nên CI là phân giác của góc ACB
c: Xét ΔBFI vuông tại F và ΔBDI vuông tại D có
BI chung
góc FBI=góc DBI
=>ΔBFI=ΔBDI
=>ID=IF
Xét ΔCDI vuông tại D và ΔCEI vuông tại E co
CI chung
góc DCI=góc ECI
=>ΔCDI=ΔCEI
=>ID=IE=IF
=>I là giao của 3 đường trung trực ΔDEF
Ta có: \(\widehat{ABC}=180^o-\left(70^o+50^o\right)=180^0-120^o=60^o\)
\(\Rightarrow\widehat{ACM}=\widehat{BCM}=30^o\)
\(\Rightarrow\widehat{BMN}=\widehat{BAC}+\widehat{MCA}=100^o\)
\(\Rightarrow\widehat{BMN}=180^o-\widehat{BMN}-\widehat{MBN}=40^o\)
\(\Rightarrow\widehat{BMN}=\widehat{MBN}\)
Kẻ \(MH\perp BC\)
\(\Rightarrow MK=\frac{1}{2}BN\)
\(\Delta MKB=\Delta BHM\left(ch-gn\right)\)( tự chứng minh )
\(\Rightarrow BK=MH\Rightarrow MC=BN\)hay \(BN=MC\)
Vậy BN = MC ( đpcm )
Có ABC = 180 - 70 - 50 = 60\(^o\)
=> ACM = MCB = 30\(^o\)
=> NMB = BAC + ACM = 100\(^o\)
=> MNB = 180 - NMB - MBN = 40\(^o\)= MBN
Từ M kẻ MH vuông BC => MH = \(\frac{1}{2}\)MC\((\)do sin 30 = \(\frac{1}{2}\)\()\)
Từ M kẻ MK vuông BN = MK = \(\frac{1}{2}\)BN\((\)do\(\Delta MBN\)cân tại M\()\)
Xét \(\Delta MKB=\Delta BHM\)\((\)cạnh huyền - góc nhọn \()\)
=> BK = MH => MC = BN