K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

A B C M P

a) Diện tích của tam giác ABC là:

\(S_{\Delta ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.8.6=24\) (cm2)

b) Ta có: N là trung điểm của AB

              M là trung điểm của BC

=> MN là đường trung bình của tam giác ABC

\(\Rightarrow MN//AC\)

Mà \(AB\perp AC\) (vì tam giác ABC vuông tại A)

Suy ra: \(MN\perp AB\)

c) Trong tứ giác AMBP:

Hai đường chéo PM và AB cắt nhau tại trung điểm mỗi đường (NP = NM ; NB = NA)

=> Tứ giác AMBP là hình bình hành

Mà \(MN\perp AB\)  (cmt) cũng đồng nghĩa với \(MN\perp PM\) (vì P là điểm đối xứng với M qua AB)

=> AMBP là hình thoi (vì hình bình hành có hai đường chéo vuông góc là hình thoi)

10 tháng 3 2020

nhầm, 2.1,5 = 3, diện tích = 3 nhé :v

10 tháng 3 2020

A B C M E F N

a, xét tứ giác BEMF có : góc CEF = góc MEB = góc MFB = 90

=> BEMF là hình chữ nhật (dh)

b, MF _|_ BA

BC _|_ AB

=> MF // BC 

M là trung điểm của AC (gt)

=> MF là đường trung bình của tam giác ABC (đl)

=> F là trung điểm của AB

F Là trung điểm của MN 

=> BMAN là hình bình hành (dh)

MN _|_ AB

=> BMAN là hình thoi (dh)

c, MF là đtb của tam giác ABC (câu a) 

=> MF = BC/2 ; BC = 4 (Gt)

=> MF = 2

tương tự tính ra BF = 1,5

=> S BEMF = 4.1,5 = 6

5 tháng 1 2017

Hình bạn tự vẽ chắc dc rùi nhé mình chỉ giải thôi 

Bài làm 

a/ \(\Delta\)ABC cân tại A có AM là đường trung tuyến ứng với cạnh BC ( M là trung điểm BC )

Nên  Am cũng là đường cao \(\Rightarrow\)AM \(⊥\)BC

  vì M là trung điểm của BC \(\Rightarrow\)BM= MC = \(\frac{1}{2}BC=\frac{1}{2}.6=3cm\)

Xét tam giác AMB vuông tại M có:

AM2 + BM2 = AB2

AM2 + 32     = 52

AM2 + 9     =  25

AM2           =  25 - 9 =16

\(\Rightarrow\)AM= \(\sqrt{16}=4\)

Vậy S ABC = \(\frac{1}{2}AM.BC\)\(\frac{1}{2}4.6=12\)

b/ Xét tứ giác AMCN có :

OA=OC (gt)

OM=ON ( N đối xứng với M qua O )

\(\Rightarrow\)Tứ giác AMCN là hình bình hành

Mà AM \(⊥\)MC ( chứng minh ở câu a ) \(\Rightarrow\)\(\widehat{AMC}\)= 90 0

Hình bình hành AMCN có \(\widehat{AMC}=90\)nên AMCN là hình chữ nhật

C/ Để AMNC là hình vuông thì AM phải bằng MC ( Vì theo lý thuyết hcn có 2 cạnh kề bằng nhau là hình vuông )

Nếu tam giác ABC vuông cân tại A thì có :

AM là đường trung tuyến ứng với cạnh huyền BC nên BM = AM = MC 

Vậy để tứ giác AMCN là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A

a: Xét ΔCAB có CN/CA=CM/CB

nên MN//AB và MN=AB/2

Xét tứ giác ADMN có

MN//AD

MD//AN

góc DAN=90 độ

Do đó: ADMN là hình chữ nhật

b: Xét tứ giác AMCK có

N là trung điểm chung của AC và MK

MA=MC

Do đó: AMCK là hình thoi

 

a) Ta có: M là trung điểm của BC(gt)

nên \(BM=CM=\dfrac{BC}{2}=\dfrac{6}{2}=3cm\)

Ta có: ΔABC cân tại A(gt)

mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)

nên AM là đường cao ứng với cạnh đáy BC(Định lí tam giác cân)

\(\Rightarrow AM\perp BC\)

Áp dụng định lí Pytago vào ΔABM vuông tại M, ta được:

\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow AM^2=AB^2-BM^2=5^2-3^2=16\)

hay AM=4(cm)

Xét ΔABC có AM là đường cao ứng với cạnh BC(gt)

nên \(S_{ABC}=\dfrac{AM\cdot BC}{2}=\dfrac{4\cdot6}{2}=\dfrac{24}{2}=12cm^2\)

Vậy: Diện tích tam giác ABC là 12cm2

b) Xét tứ giác AMCN có 

O là trung điểm của đường chéo AC(gt)

O là trung điểm của đường chéo MN(M và N đối xứng nhau qua O)

Do đó: AMCN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AMCN có \(\widehat{AMC}=90^0\)(\(AM\perp BC\))

nên AMCN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

c) Hình chữ nhật AMCN trở thành hình vuông khi AM=CM

mà \(CM=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)

Xét ΔABC có

AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)

\(AM=\dfrac{BC}{2}\)(cmt)

Do đó: ΔABC vuông tại A(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(\widehat{BAC}=90^0\)

Vậy: Khi ΔABC có thêm điều kiện \(\widehat{BAC}=90^0\) thì AMCN là hình vuông