K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(\dfrac{AB}{AC}=\dfrac{12}{5}\)

\(\Leftrightarrow AB=12cm\)

hay BC=13cm

24 tháng 8 2019

Cot B = \(\frac{AB}{AC}\Rightarrow AB=cotB.AC\)

                     \(\Rightarrow AB=2,4.5=12\left(cm\right)\)

\(BC^2=AB^2=12^2+5^2=169\)

\(\Rightarrow BC=\sqrt{169}=13cm\)

b) sin C \(\frac{AB}{BC}=\frac{12}{13}\)

                cos C = \(\frac{AC}{BC}=\frac{5}{13}\)

            tan C = \(\frac{AB}{AC}=\frac{12}{5}\)

               cot C = \(\frac{AC}{AB}=\frac{5}{12}\)

Chúc bạn học tốt !!!

8 tháng 10 2021

\(a,\sin\widehat{C}=\dfrac{AB}{BC};\cos\widehat{C}=\dfrac{AC}{BC};\tan\widehat{C}=\dfrac{AB}{AC};\cot\widehat{C}=\dfrac{AC}{AB}\\ b,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\left(pytago\right)\\ \Rightarrow\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{13};\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{5}{13}\\ \tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{12}{5};\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{5}{12}\)

\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{12}{5}\approx\tan67^022'\\ \Rightarrow\widehat{B}\approx67^022'\\ \Rightarrow\widehat{C}=90^0-67^022'=22^038'\)

 

a: Xét ΔBAC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=5(cm)

b: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2,4\left(cm\right)\\BH=1,8\left(cm\right)\\CH=3,2\left(cm\right)\end{matrix}\right.\)

17 tháng 6 2021

xét \(\Delta ABC\) vuông tại A có AH là đường cao

Áp dụng hệ thức lượng tam giác

\(=>AH^2=BH.HC=>HC=\dfrac{AH^2}{BH}=\dfrac{5^2}{4}=6,25cm\)

b, từ ý a=>\(BC=HB+HC=4+6,25=10,25cm\)

\(\)áp dụng hệ thức lượng \(=>AB^2=BH.BC=>AB=\sqrt{4.10,25}=\sqrt{41}cm\)

\(=>\cos\angle\left(ABC\right)=\dfrac{AB}{BC}=\dfrac{\sqrt{41}}{10,25}cm\)

(bài này chỉ tính 1 tỉ só thôi à bn? nếu tính hết thì bảo nhé)

17 tháng 6 2021

tính hết ạ

Bài 2: 

\(\sin65^0=\cos25^0\)

\(\cos70^0=\sin20^0\)

\(\tan80^0=\cot10^0\)

\(\cot68^0=\tan22^0\)

Bài 1: 

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=1.8^2+2.4^2=3^2\)

hay BC=3cm

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{2.4}{3}=\dfrac{4}{5}\)

\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{1.8}{3}=\dfrac{3}{5}\)

\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{2.4}{1.8}=\dfrac{4}{3}\)

\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{1.8}{2.4}=\dfrac{3}{4}\)

2 tháng 10 2021

\(\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{7}{24}\Rightarrow AB=\dfrac{14\cdot24}{7}=48\left(cm\right)\)

Áp dụng pytago:

\(BC=\sqrt{AB^2+AC^2}=50\left(cm\right)\)

\(\tan\widehat{C}=\dfrac{1}{\cot\widehat{C}}=\dfrac{24}{7}\\ \sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{48}{50}=\dfrac{24}{25}\\ \cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{14}{50}=\dfrac{7}{25}\)

2 tháng 10 2021

Cái hình gây hoang mang quábatngo