Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì ME//AB=>GÓC EMA=EAB(so le trong)
vì AC //MF => EA//MF=>GÓC EAM = AMF( so le trong)
Xét tam giác EAM và AMF có : AM là cạnh chung , góc EMA=EAB , EAM =AMF => tam giác EAM=FMA(g-c-g)
=>góc EMA=AMF(2 góc tương ứng), mà MA nàm giữa ME VÀ MF
=>AM là phân giác của EMF
Xét tam giác ABC cân tại A có AM là phân giác
=> đồng thời AM là đường trung tuyến => BM = MC
Xét tam giác MDB và tam giác MEC ta có :
^MBD = ^MCE ( gt )
BM = MC ( cmt )
^MDA = ^MEC = 900
Vậy tam giác MDB = tam giác MEC ( ch - gv )
Xét ΔMDB vuông tại D và ΔMEC vuông tại E có
MB=MC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔMDB=ΔMEC
ban tu ve hinh nha:
xet tam giacAMB va tam giaAMC
AB=AC
AM chung
M1=m2
suy ra hai tam giacAmb va amc bang nhau.
a: \(\widehat{B}=\widehat{C}=\dfrac{180^0-70^0}{2}=55^0\)
b: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
c: Xét ΔAMN có
AB/BM=AC/CN
nên MN//BC
d: Ta có: ΔAMN cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
=>AI⊥MN
mà MN//BC
nên AI⊥BC
mà AD⊥BC
và AD,AI có điểm chung là A
nên D,A,I thẳng hàng
e: Xét ΔBEC có
D là trung điểm của BC
DA//BE
Do đó: A là trung điểm của EC
b1
a) CM tam giác chứaHB và chứa HC = nhau
b) CM tam giác chứa 2 góc A = nhau
a) Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
Do đó: ΔABD=ΔAED(Cạnh huyền-góc nhọn)
Suy ra: AB=AE(Hai cạnh tương ứng)
b) Ta có: ΔABD=ΔAED(cmt)
nên DB=DE(hai cạnh tương ứng)
Xét ΔBDF vuông tại B và ΔEDC vuông tại E có
DB=DE(cmt)
\(\widehat{BDF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔBDF=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(hai cạnh tương ứng)
Xét ΔDFC có DF=DC(cmt)
nên ΔDFC cân tại D(Định nghĩa tam giác cân)
c) Ta có: ΔBDF=ΔEDC(cmt)
nên BF=EC(hai cạnh tương ứng)
Ta có: AB+BF=AF(B nằm giữa A và F)
AE+EC=AC(E nằm giữa A và C)
mà AB=AE(cmt)
và BF=EC(cmt)
nên AF=AC
Xét ΔAFC có AF=AC(cmt)
nên ΔAFC cân tại A(Định nghĩa tam giác cân)
a)\(\Delta ABC\) có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\)
=>\(\widehat{BAC}+45^o+45^o=180^o\)
=>\(\widehat{BAC}=90^o\)
b) \(\widehat{BAC}+\widehat{BAy}+\widehat{xAy}=180^o\)
=>\(90^o+\widehat{BAy}+\widehat{xAy}=180^o\)
=>\(\widehat{BAy}+\widehat{xAy}=90^o\)
Vì Ay là tia phân giác của góc BAx => \(\widehat{BAy}=\widehat{xAy}=90^o:2=45^o\)
Góc BAy và góc ABC là 2 góc so le trong mà \(\widehat{BAy}=\widehat{ABC}=45^o\)
=> Ay // BC (đpcm)
c)\(\widehat{xAy}+\widehat{HAy}+\widehat{HAC}=180^o\)
=>\(45^o+90^o+\widehat{HAC}=180^o\)
=>\(\widehat{HAC}=45^o\)
=>\(\widehat{ABC}=\widehat{HAC}=45^o\) (đpcm)