Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Xét tam giác ABC và ADE có :
góc EAD = góc CAB (đối đỉnh)
CA=EA (gt)
BA=DA (gt)
suy ra tam giác ABC=ADE (c.g.c)
suy ra :DE =BC ( 2 cạnh tương ứng ) ; góc E= góc C ; góc D = góc B (các góc tương ứng )
Mà M; N lần lượt là trung điểm của DE và BC suy ra EN=DN=BM=CM
Xét tam giác ENA và CMA có:
EN = CM ( cmt)
góc E = góc C (cmt)
AE = AC (gt)
suy ra tam giác EAN = CMA (c.g.c) suy ra AM =AN ( 2 cạnh tương ứng )
Xét tam giác NDA và MBA có:
góc D= góc B (cmt)
ND = MB (cmt )
DA = BA (cmt )
suy ra tam giác NDA = MBA (c.g.c)suy ra góc NAD = góc MAB
Ta có góc DAC +MAC+MAB = 180 độ ( vì D nằm trên tia đối của tia AB )
Mà góc NAD = góc MAB suy ra góc DAC+MAC+NAD =180 độ
suy ra 3 điểm M,A,N thẳng hàng (2)
Từ (1) và (2 ) suy ra A là trung điểm của MN
( mình vẽ hình hơi xấu , mong bạn thông cảm . Nếu đúng nhớ kết bạn với mình nhé , mong tin bạn ^-^)
Bài 3:
Xét ΔHMB vuông tại H và ΔKMC vuông tại K có
MB=MC
\(\widehat{HMB}=\widehat{KMC}\)
Do đo: ΔHMB=ΔKMC
Suy ra: BH=CK
Vì AM là đường trung tuyến
=> BM=CM
Xét ∆BMK và ∆CMH có:
MH=MK(gt)
\(\widehat{BMK}=\widehat{CMH}\)(đối đỉnh)
BM=CM(gt)
=> ∆BMK=∆CMH(c.g.c)
=> \(\widehat{BKM}=\widehat{CHM}=90^o\)
Ta có: BK⊥MK; CH⊥MK
=> BK//CH hay BK//AC
Áp dụng tính chất đường trung tuyến trong tam giác vuông
=> AM=BM=CM
=> ∆AMC cân tại M
mà MH là đường cao
=> MH đồng thời là đường trung tuyến
=> H là trung điểm AC => BH là đường trung tuyến
Xét ∆ABC có: 2 đường trung tuyến AM và BH cắt nhau tại I
=> I là trọng tâm ∆ABC
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
b: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó;ΔABM=ΔACN
Suy ra: \(\widehat{M}=\widehat{N}\)
Xét ΔEBM vuông tại E và ΔFCN vuông tại F có
BM=CN
\(\widehat{M}=\widehat{N}\)
Do đó: ΔEBM=ΔFCN
Suy ra: \(\widehat{EBM}=\widehat{FCN}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
=>IB=IC
mà AB=AC
và HB=HC
nên A,H,I thẳng hàng