Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Trực tâm là điểm D
b: EF=căn 3^2+4^2=5cm
c: DF=căn 10^2-6^2=8cm
1 ) Do tam giác ABC cân tại A , AM là trung tuyến
=> AM là đường cao của BC
Lại có : BE là đường cao của AC
Mà BE cắt AM tại H
=> H là trực tâm của tam giác ABC .
=> CH vuông góc với AB
2 ) Vào mục câu hỏi hay :
Câu hỏi của Hỏa Long Natsu ( mình )
Chúc bạn học tốt !!!
hình tự vẽ:
xét hai tam giác vuông ABE và DBE:
ab=ad(gt); be là cạnh huyền chung
=>\(\Delta\) ABE = \(\Delta\)DBE
mình sẽ giải tiếp
a) theo đinh j lý pitago : tam giác abc vuông tại A
=> \(AB^2+AC^2=BC^2\)THAY SỐ TA ĐƯỢC \(5^2+7^2=BC^2\) TA ĐƯỢC \(74=BC^2\) =>BC =
8.6023
a, xét tam giác ABC theo định lý py _ta _go ta có :
\(^{BC^2=AC^2+AB^2}\)
\(BC^2=5^2+7^2\)
\(^{BC^2=25+49}\)
\(^{BC^2=74}\)
BC=\(\sqrt{74}\)
b,xét tam giác vuông ABE và tam giác vuông DBE ta có:
BA=DB(gt)
BE chung
=}tam giác ABE=tam giác DBE(ch_cgv)
=}EA=ED (2 cạnh tương ứng)
c,xét tam giác vuông AEF và tam giác vuông DEC ta có:
AE=ED(cm câu b)
E1=E2 (đối đỉnh)
=}tam giác AEF và tam giác DEC (gn_cgv)
=}EF=EC (2 cạnh tương ứng)
d,Ta có :BA =DA (gt)
AE=ED(cm câu a)
=}BE là đường trung trực của AD
MÌNH TỰ LÀM KHÔNG BIẾT CÓ ĐÚNG HAY KHÔNG BẠN Ạ
a) Xét tam giác ABC vuông tại A
có: \(AB^2+AC^2=BC^2\) ( py - ta - go )
thay số: \(5^2+7^2=BC^2\)
\(BC^2=74\)
\(\Rightarrow BC=\sqrt{74}\)cm
b) Xét tam giác ABE vuông tại A và tam giác DBE vuông tại D
có: AB = DB ( gt)
AE là cạnh chung
\(\Rightarrow\Delta ABE=\Delta DBE\left(ch-cgv\right)\)
c) ta có: tam giác ABE = tam giác DBE ( phần b)
=> AE = DE ( 2 cạnh tương ứng)
Xét tam giác AEF vuông tại A và tam giác DEC vuông tại D
có: AE = DE ( cmt)
góc AEF = góc DEC ( đối đỉnh )
\(\Rightarrow\Delta AEF=\Delta DEC\left(cgv-gn\right)\)
=> EF = EC ( 2 cạnh tương ứng)
d) ta có: tam giác ABE = tam giác DBE ( phần b)
=> góc ABE = góc DBE ( 2 góc tương ứng )
Xét tam giác ABH và tam giác DBH
có: AB = DB ( gt)
góc ABE = góc DBE ( cmt)
BH là cạnh chung
\(\Rightarrow\Delta ABH=\Delta DBH\left(c-g-c\right)\)
=> AH = DH ( 2 cạnh tương ứng ) (1)
góc AHB = góc DHB ( 2 góc tương ứng )
mà góc AHB + góc DHB = 180 độ ( kề bù)
=> góc AHB + góc AHB = 180 độ
2. góc AHB = 180 độ
góc AHB = 180 độ :2
góc AHB = 90 độ
=> \(\Rightarrow BE\perp AD⋮H\) ( định lí vuông góc) (2)
Từ (1) ; (2) => BE là đường trung trực của AD ( định lí đường trung trực)
a) Tam giác ABC có AB2+AC2=BC2( 32+42=52)
=> Tam giác ABC vuông tại A
b)Xét tam giác DBA và tam giác DBE có
AB=BE
DBA=DBE ( vì BD là phân giác của góc ABC)
Cạnh BD chung
=> \(\Delta DBA=\Delta DBE\left(c.g.c\right)\)
c) Gọi O là giao điểm của BD và AE
Có tam giác DBA=tam giác DBE ( theo câu b)
=> AD=DE
Ta có AB=BE và AD=DE hay BD là đường trung trực của AE
Vậy \(AE⊥BD\)
d) Xét tam giác DCE vuông và tam giác DFA vuông có
AD=DE
FDA=CDE ( 2 góc đối đỉnh)
=> tam giác DCE= tam giác DFA ( cạnh góc vuông- góc nhọn)
=> DF=DC
=> tam giác DCF cân tại D
Tam giác DEA có DA=DE => Nó cân tại D
Mà CDF=ADE( 2 góc đối đỉnh)
=> FCD+DFC=DAE+DEA
=>2.FCD=2.DAE
=> FCD=DAE
Mà FCD và DAE là 2 góc so le trong
=> AE//CF