Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆ABC và ∆A'B'C' ta có :
AB = A'B'
B'A'C' = BAC
AC = A'C'
=> ∆ABC = ∆A'B'C' (c.g.c)
b) Xét ∆AMC và ∆A'M'C' ta có :
AM = A'M'
BAC = B'A'C'
AC = A'C'
=> ∆AMC = ∆A'M'C' (c.g.c)
c) Ta có :
A'M' + M'B' = A'B'
AM + MB = AB
Mà AM = A'M' , A'B' = AB
=> BM = B'M
d) Vì ∆ABC = ∆A'B'C' (cmt)
=> ABC = A'B'C'
Xét ∆MBE và ∆M'B'E' ta có :
MB = M'B'
ABC = A'B'C'
BE = B'E'
=> ∆MBE = ∆M'B'E' (c.g.c)
a) Xét ∆ABC và ∆MNP có :
AC = MP
AB = AN
A = M ( gt)
=> ∆ABC = ∆MNP (c.g.c)
b) Xét ∆FCBvà ∆KPN có :
FA = MK
A = M (gt)
AC = MP
=> ∆FCB = ∆KPN (c.g.c)
c) Ta có :
FA + FB = AB
KM + KN = MN
Mà FA = KM
=> FB = KN
d) Vì ∆ABC = ∆MNP
=> ABC = ANP
Xét ∆FEB và ∆KHN có :
NH = BE
FB = KN
ABC = ANP (cmt)
=> ∆FEB = ∆KHN (c.g.c)
a) Ta có: \(\dfrac{AN}{AB}=\dfrac{3}{6}=\dfrac{1}{2}\)
\(\dfrac{AM}{AC}=\dfrac{4.5}{9}=\dfrac{1}{2}\)
Do đó: \(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)\(\left(=\dfrac{1}{2}\right)\)
Xét ΔANM và ΔABC có
\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔANM\(\sim\)ΔABC(c-g-c)
HINH DAY BAN