Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAOB và ΔA'OC có
OA=OA'
\(\widehat{AOB}=\widehat{A'OC}\)
OB=OC
Do đó: ΔAOB=ΔA'OC
Suy ra: AB=A'C
Xét ΔABC và ΔA'CB có
AB=A'C
BC chung
AC=A'B
Do đó: ΔABC=ΔA'CB
a: Xét ΔAOB và ΔA'OC có
OA=OA'
\(\widehat{AOB}=\widehat{A'OC}\)
OB=OC
Do đó: ΔAOB=ΔA'OC
Suy ra: AB=A'C
Xét ΔABC và ΔA'CB có
AB=A'C
BC chung
AC=A'B
Do đó: ΔABC=ΔA'CB
Ta có hình vẽ:
a/ Xét tam giác ABC và tam giác A'B'C' có:
AB = A'B' (GT)
góc A = góc A' (GT)
AC = A'C' (GT)
=> tam giác ABC = tam giác A'B'C'.
b/ Ta có: tam giác ABC = tam giác A'B'C' (cmt)
=> BC = B'C'.
Mà M và M' lần lượt là trung điểm của BC và B'C'
=> CM = C'M'.
c/ Ta có: tam giác ABC = tam giác A'B'C'
Mà AM và A'M' lần lượt là trung tuyến của hai tam giác ABC và A'B'C'
=> AM = A'M'.
Ta có : \(\left\{{}\begin{matrix}BC=BM+MC\\B'C'=B'M'+M'C'\end{matrix}\right.\)
Mà theo giả thiết ta xét \(\Delta ABC;\Delta A'B'C'\) có :
\(\left\{{}\begin{matrix}AB=A'B'\\AC=A'C'\\AM=A'M'\end{matrix}\right.\)
=> \(BC=B'C'\)
=> \(\Delta ABC=\Delta A'B'C'\left(c.c.c\right)\)
\(Taco:\)
\(\left\{{}\begin{matrix}BM=MC\left(gt\right)\\B'M'=M'C'\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow BM=MC=B'M'=M'C'\)
\(Taco:\)
\(\left\{{}\begin{matrix}BM+MC=BC\\B'M'+M'C'=B'C'\end{matrix}\right.\)
\(MaBM=MC=B'M'=M'C'\left(cmt\right)\)
\(\Rightarrow BC=B'C'\)
\(Xet\Delta ABCva\Delta A'B'C',taco:\)
\(\left\{{}\begin{matrix}AB=AB'\left(gt\right)\\BC=B'C'\left(cmt\right)\\AC=A'C'\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta ABC=\Delta A'B'C'\left(c-c-c\right)\)