Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ACBF có
N là trung điểm của CF
N là trung điểm của AB
Do đó: ACBF là hình bình hành
Suy ra: AF=BC
b: Xét tứ giác AECB có
M là trung điểm của AC
M là trung điểm của BE
Do đó: ABCE là hình bình hành
Suy ra:AE//BC và AE=BC
mà AF/BC
và AE,AF có điểm chung là A
nên A,E,F thẳng hàng
mà AE=AF
nên A là trung điểm của EF
c: Xét ΔABC có
M là trung điểm của AC
N là trung điểm của AB
Do đó: MN là đường trung bình
=>MN//BC
hay MN//FE
Hình tự vẽ.
Xét tam giác AKM và tam giác BKC có:
KB=KA(K là trđ AB)
^AKM=^BKC(đối đỉnh)
KM=KC(gt)
=>Tam giác AKM=tam giác BKC(c.g.c)
=>^MAK=^KBC(hai góc tương ứng)
Mà hai góc ở vị trí so le trong
=>AM//BC(1)
=>AM=BC(hai cạnh tương ứng)(*)
Xét tam giác AEN và tam giác CEB có:
EA=EC(E là trđ AC)
^AEN=^CEB(đối đỉnh)
EB=EN(gt)
=>Tam giác AEN=tam giác CEB(c.g.c)
=>^ANE=^EBC(hai góc tương ứng)
Mà hai góc ở vị trí so le trong
=>AN//BC(2)
=>AN=BC(hai cạnh tương ứng)(**)
Từ (1) và (2)
=>AM trùng AN
=>M,A,N thẳng hàng
Từ (*) và (**)
=>AM=AN
=>đpcm
a) Xét ΔABCΔABC có:
AB=AC(gt)AB=AC(gt)
=> ΔABCΔABC cân tại A.
=> ˆABC=ˆACBABC^=ACB^ (tính chất tam giác cân).
Ta có:
{ˆABM+ˆABC=1800ˆACN+ˆACB=1800{ABM^+ABC^=1800ACN^+ACB^=1800 (các góc kề bù).
Mà ˆABC=ˆACB(cmt)ABC^=ACB^(cmt)
=> ˆABM=ˆACN.ABM^=ACN^.
Xét 2 ΔΔ ABMABM và ACNACN có:
AB=AC(gt)AB=AC(gt)
ˆABM=ˆACN(cmt)ABM^=ACN^(cmt)
BM=CN(gt)BM=CN(gt)
=> ΔABM=ΔACN(c−g−c)ΔABM=ΔACN(c−g−c)
=> AM=ANAM=AN (2 cạnh tương ứng).
b) Theo câu a) ta có AM=AN.AM=AN.
=> ΔAMNΔAMN cân tại A.
=> ˆM=ˆNM^=N^ (tính chất tam giác cân)
Xét 2 ΔΔ vuông BMEBME và CNFCNF có:
ˆMEB=ˆNFC=900(gt)MEB^=NFC^=900(gt)
BM=CN(gt)BM=CN(gt)
ˆM=ˆN(cmt)M^=N^(cmt)
=> ΔBME=ΔCNFΔBME=ΔCNF (cạnh huyền - góc nhọn)
a, Vì \(\left\{{}\begin{matrix}AN=NC\\\widehat{AND}=\widehat{BNC}\left(đối.đỉnh\right)\\BN=ND\end{matrix}\right.\) nên \(\Delta AND=\Delta CNB\left(c.g.c\right)\)
Do đó \(AD=BC\)
b, Vì \(\left\{{}\begin{matrix}AM=MB\\\widehat{AME}=\widehat{BMC}\left(đối.đỉnh\right)\\EM=MC\end{matrix}\right.\) nên \(\Delta AME=\Delta BMC\left(c.g.c\right)\)
Do đó \(\widehat{MAE}=\widehat{MBC}\) mà 2 góc này ở vị trí so le trong nên AE//BC
c, Vì \(\widehat{NAD}=\widehat{NCB}\left(\Delta AND=\Delta CNB\right)\) mà 2 góc này ở vị trí slt nên AD//BC
Mà AE//BC nên A,D,E thẳng hàng
Ta có \(AE=BC\left(\Delta AME=\Delta BMC\right)\)
Mà \(AD=BC\left(cmt\right)\) nên \(AD=AE\)
Vậy A là trung điểm DE
a: Xét tứ giác ABCQ có
N là trung điểm của AC
N là trung điểm của BQ
Do đó: ABCQ là hình bình hành
Suy ra: AQ//BC và AQ=BC
Xét tứ giác ACBP có
M là trung điểm của AB
M là trung điểm của CP
Do đó: ACBP là hình bình hành
Suy ra: AP//BC và AP=BC
Ta có: AQ//BC
AP//BC
mà AQ,AP có điểm chung là A
nên Q,A,P thẳng hàng
mà AP=AQ
nên A là trung điểm của PQ
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2
hay MN=PQ/4
=>PQ=4MN
a) Xét Δ AMN và Δ BMC có:
+ MN = MC (gt).
+ \(\widehat{AMN} = \widehat{BMC}\) (2 góc đối đỉnh).
+ MA + MB (M là trung điểm của AB).
\(\Rightarrow\) Δ AMN = Δ BMC (c - g - c).
\(\Rightarrow\) \(\widehat{MAN} = \widehat{MBC}\) (2 góc tương ứng).
Mà 2 góc này ở vị trí so le trong.
\(\Rightarrow\) AN // BC (dhnb).
b) Xét tam giác ABC có:
+ M là trung điểm của AB (gt).
+ E là trung điểm của AC (gt).
\(\Rightarrow\) ME là đường trung bình.
\(\Rightarrow\) ME // BC và ME = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình trong tam giác). (1)
Xét tam giác NBA có:
+ M là trung điểm của AB (gt).
+ F là trung điểm của BN (gt).
\(\Rightarrow\) MF là đường trung bình.
\(\Rightarrow\) MF // BC và MF = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình trong tam giác). (2)
Từ (1) và (2) \(\Rightarrow\) 3 điểm E, M, F thẳng hàng và MF = ME (cùng = \(\dfrac{1}{2}\) BC).
\(\Rightarrow\) M là trung điểm của EF (đpcm).
a: Xét tứ giác AMBC có
D là trung điểm của AB
D là trung điểm của MC
Do đó: AMBC là hình bình hành
Suy ra: AM//BC và AM=BC