Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm ngoại tiếp của \(\Delta\)ABC. Ta sẽ chứng minh O thuộc (ATN).
Ta có \(\Delta\)ABC cân tại A có tâm ngoại tiếp O => ^OAC = ^OAB = ^OBA => ^OAT = ^OBN
Ta thấy ^NBM = ^ABC = ^ACB = ^NMB (Do MN // AC) => \(\Delta\)MNB cân tại N => BN = MN
Lại có AN // TM, AT // MN suy ra tứ giác ATMN là hình bình hành => MN = AT
Do đó BN = AT, kết hợp với ^OAT = ^OBN, OA = OB suy ra \(\Delta\)OTA = \(\Delta\)ONB (c.g.c)
=> ^OTA = ^ONB = ^ONA => Bốn điểm O,A,T,N cùng thuộc một đường tròn
Hay đường tròn (ATN) luôn đi qua điểm O cố định (đpcm).
a: Xét (O) có
MB,MC là tiếp tuyến
=>MB=MC
mà OB=OC
nên OM là trung trực của BC
Xét ΔMEB và ΔMBF có
góc MBE=góc MFB
góc EMB chung
=>ΔMEB đồng dạng với ΔMBF
=>MB^2=ME*MF=MH*MO
a: Xét tứ giác AEDF có
AE//DF
AF//DE
AD là phân giác của góc FAE
Do đó: AEDF là hình thoi
b: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
Do đó; ΔAMD=ΔAND
=>AM=AN
Xét ΔAEF có AM/AF=AN/AE
nên MN//EF
Điểm M, N bị thừa à bạn?
Do OE là đường trung bình của tam giác DAF nên ED = EF.
Do ED là tiếp tuyến của (O) nên ED2 = EB . EC.
Từ đó EF2 = EB . EC nên đường thẳng EF tiếp xúc với đường tròn ngoại tiếp tam giác BCF.