K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

A B C O T M N

Gọi O là tâm ngoại tiếp của \(\Delta\)ABC. Ta sẽ chứng minh O thuộc (ATN).

Ta có \(\Delta\)ABC cân tại A có tâm ngoại tiếp O => ^OAC = ^OAB = ^OBA => ^OAT = ^OBN

Ta thấy ^NBM = ^ABC = ^ACB = ^NMB (Do MN // AC) => \(\Delta\)MNB cân tại N => BN = MN

Lại có AN // TM, AT // MN suy ra tứ giác ATMN là hình bình hành => MN = AT

Do đó BN = AT, kết hợp với ^OAT = ^OBN, OA = OB suy ra \(\Delta\)OTA = \(\Delta\)ONB (c.g.c)

=> ^OTA = ^ONB = ^ONA => Bốn điểm O,A,T,N cùng thuộc một đường tròn

Hay đường tròn (ATN) luôn đi qua điểm O cố định (đpcm).

a: Xét (O) có

MB,MC là tiếp tuyến

=>MB=MC

mà OB=OC

nên OM là trung trực của BC

Xét ΔMEB và ΔMBF có

góc MBE=góc MFB

góc EMB chung

=>ΔMEB đồng dạng với ΔMBF

=>MB^2=ME*MF=MH*MO

a: Xét tứ giác AEDF có

AE//DF

AF//DE

AD là phân giác của góc FAE

Do đó: AEDF là hình thoi

b: Xét ΔAMD vuông tại M và ΔAND vuông tại N có

AD chung

góc MAD=góc NAD

Do đó; ΔAMD=ΔAND

=>AM=AN

Xét ΔAEF có AM/AF=AN/AE

nên MN//EF

13 tháng 3 2021

Điểm M, N bị thừa à bạn?

Do OE là đường trung bình của tam giác DAF nên ED = EF.

Do ED là tiếp tuyến của (O) nên ED2 = EB . EC.

Từ đó EF2 = EB . EC nên đường thẳng EF tiếp xúc với đường tròn ngoại tiếp tam giác BCF.