K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2020

a. Xét tam giác ABM và tam giác DCM có:

+, BM = MC ( AM là đường trung tuyến của tam giác ABC )

+, Góc AMB = góc DMC ( 2 góc đối đỉnh )

+, AM = MD ( gt )

=> tam giác ABM = tam giác DCM ( c.g.c )

=> AB = CD ( 2 cạnh tương ứng ) 

=> góc BAM = góc CDM ( 2 góc tương ứng ) 

Mà 2 góc này ở vị trí so le trong

=> AB // CD ( đpcm )

30 tháng 6 2021

có hình ko vậy ạ

 

16 tháng 6 2019

12 tháng 3 2022

a. Xét tam giác ABM và tam giác DCM có:

+, BM = MC ( AM là đường trung tuyến của tam giác ABC )

+, Góc AMB = góc DMC ( 2 góc đối đỉnh )

+, AM = MD ( gt )

=> tam giác ABM = tam giác DCM ( c.g.c )

=> AB = CD ( 2 cạnh tương ứng ) 

=> góc BAM = góc CDM ( 2 góc tương ứng ) 

Mà 2 góc này ở vị trí so le trong

=> AB // CD ( đpcm )

10 tháng 6 2020

vẽ hình lỗi nên ko vẽ được

a) xét \(\Delta BAM\)\(\Delta CDM\)

AM=MD(GT)

\(\widehat{BMA}=\widehat{CMD}\left(Đ^2\right)\)

BM=CM (GT)

=>\(\Delta BAM\)=\(\Delta CDM\)(C-G-C)

=> ab=cd( hai cạnh tương ứng )

\(\Rightarrow\widehat{ABM}=\widehat{DCM}\)HAY\(\widehat{ABC}=\widehat{DCB}\)( hai góc trương ứng)

MÀ HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG = NHAU

\(\Rightarrow AB//CD\left(đpcm\right)\)

xét \(\Delta BDM\)\(\Delta CAM\)

\(BM=CM\left(GT\right)\)

\(\widehat{BMD}=\widehat{CMA}\left(Đ^2\right)\)

\(DM=AM\left(GT\right)\)

=>\(\Delta BDM\)=\(\Delta CAM\)(C-G-C)

=> BD=AC ( HAI CẠNH TƯƠNG ỨNG )

\(\Rightarrow\widehat{MBD}=\widehat{MCA}\)HAY\(\widehat{CBD}=\widehat{BCA}\)( HAI GÓC TƯƠNG ỨNG )

HAI GÓC NÀY Ở VỊ TRÍ S SOLE TRONG  BẰNG NHAU 

=>AC//BD

B) đề sai

12 tháng 6 2020

phần B để đúng mà bn

1 tháng 3 2018

3 tháng 7 2016

Vẽ hình đj bn

3 tháng 7 2016

Bạn tự vẽ hình nhaleu

a.

Xét tam giác ABO và tam giác CDO có:

AO = CO (BO là trung truyến của tam giác ABC)

AOB = COD (2 góc đối đỉnh)

BO = DO (gt)

=> Tam giác ABO = Tam giác CDO (c.g.c)

=> BAO = DCO (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AB // CD.

b.

BO là trung tuyến của tam giác ABC

=> O là trung điểm của AC

=> AO = CO = \(\frac{1}{2}AC\) (1)

  • BO = DO (gt) => CO là trung tuyến của tam giác BCD
  • BM = CM (M là trung điểm của BC) => DM là trung tuyến của tam giác BCD

=> I là giao điểm của 2 đường trung tuyến CO và DM của tam giác BCD

=> I là trọng tâm của tam giác BCD.

=> IO = \(\frac{1}{3}OC\) (2)

Thay (1) vào (2), ta có:

IO = \(\frac{1}{3}OC=\frac{1}{3}\times\frac{1}{2}AC=\frac{1}{6}AC\)

\(\Rightarrow AC=6\times IO\)

c.

AB // CD

=> EBM = DCM (2 góc so le trong)

Xét tam giác EBM và tam giác DCM có:

EBM = DCM (chứng minh trên)

BM = CM (M là trung điểm của BC)

BME = CMD (2 góc đối đỉnh)

=> Tam giác EBM = Tam giác DCM (g.c.g)

=> BE = CD (2 cạnh tương ứng)

mà CD = AB (tam giác ABO = tam giác CDO)

=> BE = AB.

Chúc bạn học tốtok

a: Xét ΔMAB và ΔMDC có

MA=MD

góc AMB=góc DMC

MB=MC

=>ΔMAB=ΔMDC

=>góc MAB=góc MDC

=>AB//DC

b: Xét ΔKMB và ΔFMC có

góc MBK=góc MCK

MB=MC

góc KMB=góc FMC

=>ΔKMB=ΔFMC

=>MK=MF

=>M là trung điểm của KF

14 tháng 4 2019

a, xét t.giác AMB và t.giác DMC có:

            AM=DM(gt)

           \(\widehat{AMB}\)=\(\widehat{DMC}\)(vì đối đỉnh)

          CM=BM(gt)

=>t.giác AMB=t.giác DMC(c.g.c)

b,đề bài bị thiếu

15 tháng 4 2019

mình viết nhầm câu b) I là trung điểm cD.