Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Bèo Bánh - Toán lớp 8 - Học toán với OnlineMath
Bạn tham khảo bài làm tại link này !
*MO//BN (O thuộc AC).
\(\dfrac{AK}{AM}=\dfrac{1}{2}\Rightarrow\)K là trung điểm AM.
-△AMO có: K là trung điểm AM, KN//MO \(\Rightarrow\)N là trung điểm AO.
-△BNC có: MO//BN, M là trung điểm BC \(\Rightarrow\)O là trung điểm NC.
\(\Rightarrow AN=ON=OC=\dfrac{1}{3}AC\)
\(\dfrac{S_{AKN}}{S_{ABC}}=\dfrac{S_{AKN}}{S_{AMC}}.\dfrac{S_{AMC}}{S_{ABC}}=\dfrac{AN}{AC}.\dfrac{MC}{BC}=\dfrac{1}{3}.\dfrac{1}{2}=\dfrac{1}{6}\)
\(\Rightarrow S_{AKN}=\dfrac{S_{ABC}}{6}=\dfrac{60}{6}=10\left(cm^2\right)\)
a/ Theo tính chất đường phân giác trong tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy ta có
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{m}{n}\)
Hai tam giác ABD và tam giác ACD có chung đường cao hạ từ A xuống BC nên
\(\frac{S_{\Delta ABD}}{S_{\Delta ACD}}=\frac{BD}{CD}=\frac{m}{n}\)
b/ Ta có
\(\frac{S_{\Delta ABD}}{S_{\Delta ACD}}=\frac{m}{n}\Rightarrow\frac{S_{\Delta ABD}}{m}=\frac{S_{\Delta ACD}}{n}=\frac{S_{\Delta ABD}+S_{\Delta ACD}}{m+n}=\frac{S_{\Delta ABC}}{m+n}=\frac{s}{m+n}\)
\(\Rightarrow S_{\Delta ABD}=\frac{sm}{m+n}\)
Xét hai tam giác ABM và tam giác ABC có chung đường cao hạ từ A xuống BC nên
\(\frac{S_{\Delta ABM}}{S_{\Delta ABC}}=\frac{BD}{BC}=\frac{1}{2}\Rightarrow S_{\Delta ABM}=\frac{S_{\Delta ABC}}{2}=\frac{s}{2}\)
Mà \(S_{\Delta ADM}=S_{\Delta ABM}-S_{\Delta ABD}=\frac{s}{2}-\frac{sm}{m+n}\)