K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

A B C D E y

\(Dy\) // \(BC\Rightarrow\widehat{ABC}=\widehat{BDE}\) (đồng vị)

\(\widehat{BED}=\widehat{CBE}\) (so le trog) (1)

Xét \(\Delta ABC\)\(\Delta BDE\) có:

AB = BD (gt)

\(\widehat{ABC}=\widehat{BDE}\) (c/m trên)

BC = DE (gt)

\(\Rightarrow\Delta ABC=\Delta BDE\left(c.g.c\right)\)

\(\Rightarrow\widehat{ACB}=\widehat{BED}\) (2 góc t/ư) (2)

Từ (1) và (2) suy ra:

\(\widehat{CBE}=\widehat{ACB}\)

mà 2 góc này ở vj trí so le trong nên \(AC\) // \(BE.\)

1 tháng 3 2018

A B C D E M I

a) Ta có : \(\left\{{}\begin{matrix}\widehat{ABC}+\widehat{CBD}=180^o\\\widehat{ACB}+\widehat{BCE}=180^o\end{matrix}\right.\left(kềbù\right)\)

Lại có : \(\widehat{ABC}=\widehat{ACB}\) (\(\Delta ABC\) cân tại A)

Nên : \(180^o-\widehat{ABC}=180^o-\widehat{ACB}\)

\(\Leftrightarrow\widehat{CBD}=\widehat{BCE}\)

Xét \(\Delta BDC,\Delta CBE\) có :

\(BC:Chung\)

\(\widehat{CBD}=\widehat{BCE}\left(cmt\right)\)

\(BD=CE\left(gt\right)\)

=> \(\Delta BDC=\Delta CBE\left(c.g.c\right)\)

Xét \(\Delta BID,\Delta CIE\) có :

\(\widehat{BID}=\widehat{CIE}\) (đối đỉnh)

\(BD=CE\left(gt\right)\)

\(\widehat{BDI}=\widehat{CEI}\) (do \(\Delta BDC=\Delta CBE\))

=> \(\Delta BID=\Delta CIE\left(g.c.g\right)\)

=> \(\left\{{}\begin{matrix}IB=IC\left(\text{2 cạnh tương ứng}\right)\\ID=IE\left(\text{2 cạnh tương ứng}\right)\end{matrix}\right.\)

b) Ta có : \(\left\{{}\begin{matrix}AB=AC\left(\text{tam giác ABC cân tại A}\right)\\BD=CE\left(gt\right)\end{matrix}\right.\)

Lại có : \(\left\{{}\begin{matrix}AB+BD=AD\\AC+CE=AE\end{matrix}\right.\)

Suy ra : \(AB+BD=AC+EC\)

\(\Leftrightarrow AD=AE\)

=> \(\Delta ADE\) cân tại A

Ta có : \(\widehat{ADE}=\widehat{AED}=\dfrac{180^o-\widehat{A}}{2}\left(1\right)\)

Xét \(\Delta ABC\) cân tại A có :

\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^{^O}-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{ADE}=\widehat{ABC}\left(=\dfrac{180^{^O}-\widehat{A}}{2}\right)\)

Mà thấy : 2 góc này ở vị trí đồng vị

=> \(BC//DE\rightarrowđpcm\)

c) Xét \(\Delta ABM,\Delta ACM\) có :

\(AB=AC\) (\(\Delta ABC\) cân tại A)

\(\widehat{ABM}=\widehat{ACM}\) (\(\Delta ABC\) cân tại A)

BM = CM (M là trung điểm của BC)

=> \(\Delta ABM=\Delta ACM\left(c.g.c\right)\)

=> \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

=> AM là tia phân giác của \(\widehat{A}\) (3)

Ta chứng minh : \(\Delta ABI=\Delta ACI\)

Suy ra : \(\widehat{AIB}=\widehat{AIC}\) (2 góc tương ứng)

=> AI là tia phân giác của \(\widehat{A}\) (4)

Từ (3) và (4) => \(AM\equiv AI\)

=> A, M, I thẳng hàng.

=> đpcm

27 tháng 2 2019

tu ke hinh

a, AB = 3cm (gt) => AB2 = 32 = 9 cm

AC = 4cm (gt) => AC2 = 42 = 16 cm

=> AB2 + AC2 = 9 + 15 = 25 cm

BC = cm (gt) => BC2 = 52 = 25 cm

=> BC2 = AB2 + AC2

=> tam giac ABC vuong tai A (dinh li Pytago dao)

b, AB = 3cm (gt); BQ = 3cm (Gt)

=> AB = BQ 

=> tam giac ABQ can tai B (dn)

=> goc BAQ = (180 - goc ABQ) : 2    (1)

co goc ABQ + ABC = 180 (kb)

=> goc ABC = 180 - goc ABQ

BE la phan giac cua goc ABC (gt) => goc EBA = goc ABC : 2 (dn)

=> goc EBA = (180 - goc ABQ) : 2 (2)

(1)(2) => goc EBA = goc BAQ ma 2 goc nay so le trong

=> EB // AQ (dl)

c, co tam giac BAQ can tai B (cau b)

=> goc BAQ = goc BQA (dl)

Qx // AB => goc BAQ = goc AQK (slt)

=> goc BQA = goc AQK (tcbc)

xet tam giac AQI va tam giac AQK co : AQ chung

QI = QK (gt)0

=> tam giac AQI = tam giac AQK (c - g - c)

=> goc AIQ = goc AKQ (dn)

goc AIQ = 90 do I la hinh chieu cua A (gt)

=> goc AKQ = 90 

co goc AKQ + goc BAC = goc CAK ma goc BAC = 90 do tam giac ABC vuong tai A (cau a)

=> goc CAK = 180

=> C; A; K  thang hang

11 tháng 2 2016

a, Ta có t/g ABC đều => góc A =B =C = 60độ. 

MÀ AB//CE => góc A = góc ACE (=60 độ) ( 2 góc so le trong )

mặt khác ta có góc C + ACE  + ECD =180 độ => ECD =60 độ => t/g CDE đều

DUYỆT NHA !!!