Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé!
Vì BD là p/g của góc ABC => góc ABD = góc DBC = \(\frac{1}{2}\) góc ABC = góc C
=> góc ABD = góc C
Mà góc ABN + ABD = 180o; góc ACP + C = 180o
Nên góc ABN = ACP
Xét tam giác ABN và tam giác PCA có: BN = CA; góc ABN = PCA ; AB = PC
=> tam giác ABN = PCA ( c - g - c)
=> góc BAN = APC
Vậy để AP | AN => góc PAN = 90o => BAN + BAC + CAP = 90o
=> APC + BAC + CAP = 90o
Xét tam giác ACP có: góc ACB = APC + CAP ( t/ c góc ngoài tam giác )
=> góc ACB + BAC = 90o
=> góc ABC = 90o => góc ACB = ABC/ 2 = 45o
Vậy góc ACB = 45o thì AN | AP
a) Xét t/g AME và t/g DMB có:
AM=DM (gt)
AME=DMB ( đối đỉnh)
ME=MB (gt)
Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)
b) t/g AME = t/g DMB (câu a)
=> AE=BD (2 cạnh tương ứng) (1)
AEM=DBM (2 góc tương ứng)
Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)
(1) và (2) là đpcm
c) Xét t/g AKE và t/g CKD có:
AEK=CDK (so le trong)
AE=CD ( cùng = BD)
EAK=DCK (so le trong)
Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)
d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)
=> AF = DC (2 cạnh tương ứng)
AFM=DCM (2 góc tương ứng)
Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC
Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)
Mà AF=DC=BD=AE (4)
Từ (3) và (4) => A là trung điểm của EF (đpcm)