K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

đây hình như là toán lớp 8 nâng cao thỉ phải

31 tháng 7 2017

có lẽ vậy

23 tháng 8 2018

ý 1 câu a )

 có ED vuông góc BC  ; AH vuông góc BC  => ED//AH =>  tam giác CDE đồng dạng vs tam giác CHA  ( talet)      (1)

 xét tam giác CHA  và tam giác CAB  có CHA=CAB=90 độ ; C chung => tam giác CHA  đồng dạng vs tam giác CAB ( gg) (2)

  từ (1) và (2) =>tam giác CDE  đồng dạng tam giác CAB  (  cùng đồng dạng tam giác CHA )

 có tam giác CDE đồng dạng tam giác CAB  (cmt) => \(\frac{CE}{CB}=\frac{CD}{CA}\)

xét tam giác BAC  và tam giác ADC  có góc C chung và \(\frac{CE}{BC}=\frac{CD}{AC}\left(CMT\right)\) => tam giác BAC đồng dạng vs tam giác ADC (  trường hợp c-g-c) , mấy câu kia quên mịa nó r -.-

25 tháng 8 2018

thanks bạn

26 tháng 8 2020

ĐỀ BÀI THIẾU \(\widehat{BAC}=105^0\). Hình vẽ trong TKHĐ

Qua A kẻ đường thẳng vuông góc với AC cắt BC tại M. Tại E kẻ đường thẳng song song với AH cắt AC tại D.

Xét tam giác ABE có AB=BE=1 mà ^ABE=600 nên tam giác ABE đều. Khi đó 

\(AH=AB\cdot\sin\widehat{ABH}=\sin60^0=\frac{\sqrt{3}}{2}\)

Dễ thấy \(\Delta MAE=\Delta ADE\left(g.c.g\right)\Rightarrow AD=AM\Rightarrow\Delta\)AMC vuông tại A có đường cao AH theo hệ thức lượng:

\(\frac{1}{AC^2}+\frac{1}{AM^2}=\frac{1}{AH^2}\Rightarrow\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{4}{3}\)

26 tháng 8 2020

Gọi F đối xứng với C qua A. Khi đó tam giác FBC vuông tại F.

Theo hệ thức lượng thì \(BC^2=HC\cdot CF\). Mặt khác \(BC^2=2AB\cdot HC\)

Đến đây dễ rồi nha, làm tiếp thì chán quá :(

8 tháng 6 2019

E A B C D H F

Từ A dựng đường cao AH ( H thuộc BC ), kẻ đường thẳng A vuông góc với AC và cắt BC tại F 

\(\Delta ABH\) có \(\sin60^0=\frac{AH}{AB}=\frac{\sqrt{3}}{2}\)\(\Leftrightarrow\)\(AH=\frac{\sqrt{3}}{2}\)

\(\Delta ACH\) có \(\tan15^0=\frac{AH}{HC}=2-\sqrt{3}\)\(\Leftrightarrow\)\(HC=\frac{AH}{2-\sqrt{3}}=\frac{\frac{\sqrt{3}}{2}}{2-\sqrt{3}}=\frac{3+2\sqrt{3}}{2}\)

Py-ta-go \(\Delta ACH\) có \(AC^2=AH^2+HC^2=\frac{3}{4}+\frac{21+12\sqrt{3}}{4}=6+3\sqrt{3}\)

\(\Rightarrow\)\(\frac{1}{AC^2}=\frac{1}{6+3\sqrt{3}}\) (1) 

\(\Delta ABH\) có \(\tan60^0=\frac{AH}{BH}=\sqrt{3}\)\(\Leftrightarrow\)\(BH=\frac{AH}{\sqrt{3}}=\frac{\frac{\sqrt{3}}{2}}{\sqrt{3}}=\frac{1}{2}\)

Mà \(BC=BH+HC=\frac{1}{2}+\frac{3+2\sqrt{3}}{2}=2+\sqrt{3}\)

Ta-let \(\Delta ABC\) có \(\frac{AD}{AC}=\frac{BE}{BC}\)\(\Leftrightarrow\)\(AD=\frac{BE}{BC}.AC\)\(\Leftrightarrow\)\(AD^2=\frac{BE^2}{BC^2}.AC^2\)

\(\Leftrightarrow\)\(AD^2=\frac{1}{7+4\sqrt{3}}.\left(6+3\sqrt{3}\right)=6-3\sqrt{3}\)\(\Leftrightarrow\)\(\frac{1}{AD^2}=\frac{1}{6-3\sqrt{3}}\) (2) 

Từ (1) và (2) suy ra \(\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{1}{6+3\sqrt{3}}+\frac{1}{6-3\sqrt{3}}=\frac{4}{3}\) ( đpcm ) 

9 tháng 9 2019

Câu hỏi của Phạm An Nguyên - Toán lớp 8 - Học toán với OnlineMath