Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEB và ΔCFD có
AE=CF
\(\widehat{EAB}=\widehat{FCD}\)
AB=CD
Do đó: ΔAEB=ΔCFD
Suy ra:BE=FD
Xét ΔADE và ΔCBF có
AE=CF
\(\widehat{DAE}=\widehat{BCF}\)
AE=CF
Do đó: ΔADE=ΔCBF
Suy ra: DE=BF
Xét tứ giác BEDF có
BE=DF
DE=BF
Do đó: BEDF là hình bình hành
Gọi O là giao điểm 2 đường chéo AC và BD
Xét \(\Delta\)AOE và \(\Delta\)COF có:AO=OC ( vì ABCD là hình bình hành ),CF=AE ( giả thiết ),^AOE=^COF ( đối đỉnh )
a
Vì vậy \(\Delta AOE=\Delta COF\left(c.g.c\right)\Rightarrow OE=OF\left(1\right)\)
Xét \(\Delta\)BON và \(\Delta\)DOM có:OB=OD ( vì ABCD là hình bình hành ),MD=BN ( vì AM=CN ),^MOD=^NOB ( đối đỉnh )
Vì vậy \(\Delta BON=\Delta COM\left(c.g.c\right)\Rightarrow OM=ON\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) suy ra tứ giác EMFN là hình bình hành.
b
Hình bình hành EMFN có O là giao điểm của 2 đường chéo,tứ giác ABCD có O là giao điểm của 2 đường chéo.
=> ĐPCM
P/S:Mik ko chắc lắm đâu nha,nhất là câu b ý:p
a)
Vì \(\hept{\begin{cases}NF\perp AC\\BH\perp AC\end{cases}}\Rightarrow NF//BH\)
\(\hept{\begin{cases}NF//AB\\NB=NC\end{cases}}\Rightarrow\)NF là đường trung bình
=> \(NF=\frac{1}{2}BH\)
Ta lại có :
\(\hept{\begin{cases}ME\perp AC\\BH\perp AC\end{cases}}\Rightarrow ME//BH\)
\(\hept{\begin{cases}BH//ME\\AM=MB\end{cases}\Rightarrow}\)ME là đường trung bình của tam giác
=> \(ME=\frac{1}{2}BH\)
Vì \(\hept{\begin{cases}NF=\frac{1}{2}BH\\ME=\frac{1}{2}BH\end{cases}}\Rightarrow ME=NF\)
Xong a
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
a: Xét ΔANF có
M là trung điểm của AN
E là trung điểm của AF
Do đó: ME là đường trung bình của ΔANF
Suy ra: ME//NF
hay MEFN là hình thang
b: Xét ΔBEM có
N là trung điểm của BM
NI//ME
Do đó: I là trung điểm của BE
hay BI=IE