Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BẠN TỰ VẼ HÌNH NHÉ
Lấy K trung điểm AB. Nối K với E, K với C. Như vậy D trung điểm AK
Ta có do KEKE là đường trung bình tam giác ABCABC nên KE//BCKE//BC và KE=12BCKE=12BC.
Lại có DEDE là đường trung bình tam giác AKCAKC nên DE//KCDE//KC.
Xét tam giác KEC và tam giác FCEcó
+ chung CE
+ ˆKEC=ˆFCE^ (so le trong do KE//BC)
+ ˆADE=ˆACK(đồng vị) mà ˆADE=ˆCEFnên ˆCEF=ˆACK
Như vậy △KEC=△FCE (g.c.g) nên CF=EK
Mà EK=1/2BCnên CF=1/2B
Ta có đpcm
Vì DF//AB (gt) . Áp dụng định lý Talet ta có : \(\frac{AF}{AC}=\frac{BD}{BC}\)(1)
Vì DE//AC (gt) . Áp dụng định lý Talet ta có : \(\frac{AE}{AB}=\frac{CD}{BC}\)(2)
Từ (1);(2) \(\Rightarrow\frac{AE}{AB}+\frac{AF}{AC}=\frac{BD}{BC}+\frac{CD}{BC}=\frac{BD+CD}{BC}=\frac{BC}{BC}=1\)(Đpcm)
Lấy H là trung điểm của BC, I là trung điểm của AB, G là trung điểm của EF
O là giao của EH và IC
trong tam giác ABC có IE là đường trung bình nênIE//BC=> IECH là hình bình hành->
EO=OH,IO=OC
trong tam giác ACI có DE là đường trung bình-> DE//IC -> OC//EF
Do OC//EF và EO=OH EG=GF=> OC đi qua trung điểm của HF => C là TĐ HF
=> CF=1/2BC (đpcm)
Áp dụng định lí Menelaus :
\(\frac{AE}{CE}\).\(\frac{AD}{BD}\).\(\frac{BF}{CF}\)= 1
Mà AE = CE, AD = 1/3BD
=> BF/CF = 3
=> CF = 1/2 BC