K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2017

ahihi

10 tháng 3 2017

 giúp mình nhanh tí nhé :v

5 tháng 3 2017

90cm vuông bạn ạ

22 tháng 6 2016

S IEC = \(\frac{1}{2}\)S IEB vi: 

- Đáy EC = \(\frac{1}{2}\) dáy EB

- Chung đường cao từ đỉnh I xuống đáy BC

Mà hai tam giác này còn chung đáy IE, suy ra đường cao từ đỉnh C xuống đáy IE = \(\frac{1}{2}\)đường cao từ đỉnh B xuống đáy IE

Hai đường cao này lần lượt là đường cao của hai tam giác AIC và AIB. Tam giác AIC và AIB chung đáy AI, => SAIC = \(\frac{1}{2}\)S AIB

A B C D E I

Nối B với I.

Trong tam giác AEC và tam giác ACD đều có tam giác AIC, suy ra \(\frac{^SACD}{^SAEC}=\frac{^SAID}{^SCIE}\)

S IEC = \(\frac{1}{2}\)S IEB vi: 

- Đáy EC = \(\frac{1}{2}\) dáy EB

- Chung đường cao từ đỉnh I xuống đáy BC

Mà hai tam giác này còn chung đáy , suy ra đường cao từ đỉnh C xuống đáy IE = \(\frac{1}{2}\)đường cao từ đỉnh B xuống đáy IE

Hai đường cao này lần lượt là đường cao của hai tam giác AIC và AIB. Tam giác AIC và AIB chung đáy AI, => SAIC = \(\frac{1}{2}\)S AIB

S AID = \(\frac{1}{2}\)S DIB vi: 

- Đáy AD = \(\frac{1}{2}\) đáy DB

- Chung đường cao từ đỉnh I xuống đáy AB

Mà hai tam giác này còn chung đáy ID , suy ra đường cao từ đỉnh A xuống đáy ID = \(\frac{1}{2}\)đường cao từ đỉnh B xuống đáy ID

Hai đường cao này lần lượt là đường cao của hai tam giác AIC và IBC. Tam giác AIC và IBC chung đáy IC, => SAIC = \(\frac{1}{2}\)S IBC

Ta có : SAIC = \(\frac{1}{2}\)S IBC

           SAIC = \(\frac{1}{2}\)S AIB

=> IBC = S AIB

Hai tam giác này còn chung đáy IB, suy ra chiều cao từ đỉnh C xuống đáy IB = chiều cao từ đỉnh A xuống đáy IB

Hai chiều cao này lần lượt là chiều cao hai tam giác CIE và AID, => AID = S CIE và SACD = AEC

          Đáp số: \(\frac{^SACD}{^SAEC}=\frac{^SAID}{^SCIE}\)= 1

22 tháng 6 2016

a/

+ Xét tam giác ACD và tam giác ABC có chung đường cao hạ từ C xuống AB nên:

\(\frac{S_{ACD}}{S_{ABC}}=\frac{AD}{AB}=\frac{1}{3}\Rightarrow S_{ACD}=\frac{S_{ABC}}{3}\)

+ Xét tam giác AEC và tam giác ABC có chung đường cao hạ từ A xuống BC nên

\(\frac{S_{AEC}}{S_{ABC}}=\frac{EC}{BC}=\frac{1}{3}\Rightarrow S_{AEC}=\frac{S_{ABC}}{3}\)

\(\Rightarrow S_{ACD}=S_{AEC}\)

+ Ta có

\(S_{ACD}=S_{AIC}+S_{AID}\)

\(S_{AEC}=S_{AIC}+S_{CIE}\)

\(S_{ACD}=S_{AEC}\Rightarrow S_{AIC}+S_{AID}=S_{AIC}+S_{CIE}\Rightarrow S_{AID}=S_{CIE}\)

b/ Xét tam giác ACD và tam giác AEC có chung cạnh đáy AC mà \(S_{ACD}=S_{AEC}\) nên

Đường cao hạ từ D xuống AC = Đường cao hạ từ E xuống AC

=> Khoảng cách giữa hai đoạn thẳng DE và AC không đổi => DE//AC

23 tháng 1 2018

bạn lên câu hỏi tương tự đã trả lời câu này rồi

          chúc học tốt ^^

23 tháng 1 2018

https://olm.vn/hoi-dap/question/63374.html