Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: Sửa đề: vuônggóc BC, cắt AC tại H
Xet ΔCDH vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDH đồng dạng với ΔCAB
c: BD/DC=AB/AC=4/3
a) BD=45/7 CD=60/7 DE36/7
b) ADB=162/7 BCD k có vì 3 điểm này thẳng hàng
a) Xét \(\Delta ABC\) và \(\Delta ADB\) có:
\(\widehat{A}\) chung
\(\widehat{ACB}=\widehat{ABD}\) (gt)
\(\Rightarrow\Delta ABC\) đồng dạng với \(\Delta ADB\) (g-g)
\(\Rightarrow\dfrac{AB}{AD}=\dfrac{AC}{AB}\)
\(\Rightarrow AB^2=AC.AD\)
Hình bạn tự vẽ nha.
a, \(\Delta ABC\) có: AM là đường trung tuyến của \(\Delta ABC\)\(\Rightarrow BM=MC\), \(AI=\frac{2}{3}AM\)
\(\Delta AMB\)có: MD là phân giác của \(\widehat{AMB}\)\(\Rightarrow\frac{AD}{DB}=\frac{AM}{MB}\)(tính chất đường phân giác trong tam giác) (1)
\(\Delta AMC\)có: ME là phân giác của \(\widehat{AMC}\)\(\Rightarrow\frac{AE}{EC}=\frac{AM}{MC}\)(tính chất đường phân giác trong tam giác) (2)
Từ (1), (2) và \(BM=MC\left(cmt\right)\Rightarrow\frac{AD}{DB}=\frac{AE}{EC}\)
\(\Delta ABC\)có: \(\frac{AD}{DB}=\frac{AE}{EC}\left(cmt\right)\Rightarrow DE//BC\)(định lý Ta-lét đảo)
b, \(\Delta ABM\)có: \(DI//BM\left(cmt\right)\Rightarrow\frac{DI}{BM}=\frac{AI}{AM}\)(hệ quả của định lý Ta-lét) (3)
\(\Delta AMC\)có: \(IE//MC\left(cmt\right)\Rightarrow\frac{IE}{CM}=\frac{AI}{AM}\)(hệ quả của định lý Ta-lét) (4)
Từ (3), (4) và \(BM=MC\left(cmt\right)\Rightarrow DI=IE\)
c, Ta có: \(\frac{IE}{CM}=\frac{AI}{AM}\left(cmt\right)\)\(\Leftrightarrow\frac{IE}{15}=\frac{\frac{2}{3}AM}{AM}\)\(\Leftrightarrow\frac{IE}{15}=\frac{\frac{2}{3}.10}{10}\)\(\Leftrightarrow\frac{IE}{15}=\frac{2}{3}\)\(\Leftrightarrow IE=10\left(cm\right)\)
a) xét tam giác MBC có \(\widehat{MBC}=\widehat{MCB}\)=> tam giác MBC cân tại M, HE _|_BC
=> E là trung điểm của BC
tam giác EMC có EO là phân giác \(\widehat{MEC}\)
=> \(\frac{MD}{CD}=\frac{ME}{EC}=\frac{3}{4}\)
\(ME=\frac{3}{4}CE\)
\(ME^2+CE^2=MC^2\Rightarrow\frac{9}{16}CE^2+CE^2=15^2\)
\(\Rightarrow\frac{25}{16}CE^2=15^2\Rightarrow CE=12\Rightarrow HE=9\)
b) tam giác ABM và tam giác ACB có
\(\widehat{BAC}=90^o\)là góc chung
\(\widehat{ABM}=\widehat{ACB}\left(gt\right)\)
=> tam giác ABM ~ tam giác ACB (g.g)
=> \(\frac{AB}{AC}=\frac{AM}{AB}\Rightarrow AB^2=AC\cdot AM\)
đề thiếu dữ kiện nhé bạn
người ta bảo chứng minh cái gì vậy bạn