K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CM
12 tháng 3 2017
Chọn B.
Áp dụng định lí Cosin, ta có
BC2 = AB2 + AC2 - 2AB.AC.cosA
= 32 + 62-2.3.6.cos600 = 27
Ta thấy: BC2 + AB2 = AC2
Suy ra tam giác ABC vuông tại B
do đó bán kính R = AC : 2 = 3.
NV
Nguyễn Việt Lâm
Giáo viên
21 tháng 2 2021
\(cosC=\dfrac{a^2+b^2-c^2}{2ab}=\dfrac{7}{8}\Rightarrow sinC=\sqrt{1-cos^2C}=\dfrac{\sqrt{15}}{8}\)
Áp dụng công thức trung tuyến:
\(BM=m_b=\dfrac{\sqrt{2\left(a^2+c^2\right)-b^2}}{2}=\dfrac{\sqrt{31}}{2}\)
Gọi R là bán kính đường tròn ngoại tiếp BMC, áp dụng định lý hàm sin:
\(\dfrac{BM}{sinC}=2R\Leftrightarrow R=\dfrac{BM}{2sinC}=\dfrac{2\sqrt{465}}{15}\)