K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Hình vẽ:(không chắc nó có hiện ra hay k bạn thông cảm)Câu a)
Dễ chứng minh ATNO là tứ giác nội tiếp
Đồng thời MB=MC nên OM vuông góc BC hay OMNT là tứ giác nội tiếp
Suy ra: A,O,M,N,T cùng thuộc một đường tròn(đường kính OT)
Có OMNT là tứ giác nội tiếp suy ra: \(\widehat{BMN}=\widehat{TON}\)
Mà \(\widehat{TON}=\widehat{TAN}=\widehat{TNA}\)
Cho nên: \(\widehat{BMN}=\widehat{TNA}\)
Hơn nữa: \(\widehat{TNA}=\widehat{ACN}\)(cùng bằng một nửa số đo cung ABN)
\(\Rightarrow\widehat{BMN}=\widehat{ACN}\)
Xét tam giác BMN và tam giác ACN có: \(\hept{\begin{cases}\widehat{BMN}=\widehat{ACN}\\\widehat{MBN}=\widehat{CAN}\end{cases}}\)
Do đó: \(\Delta BMN~\Delta ACN\left(g.g\right)\)\(\Rightarrow\frac{BN}{AN}=\frac{MB}{AC}=\frac{MC}{AC}\)
Chứng minh tiếp \(\Delta ABN~\Delta AMC\left(c.g.c\right)\)từ tỉ số trên và \(\widehat{ANB}=\widehat{ACM}\)
Vậy \(\widehat{BAN}=\widehat{CAM}\)
___________________________________________________________________________________________________________
Câu b) Hình vẽ cho câu b): (không hiện ra thì bn thông cảm do paste từ GeoGebra ra)
Gọi giao DK cắt BF tại P
Ta có: \(\Delta TNB~\Delta TCN\)\(\Rightarrow\frac{TN}{TC}=\frac{NB}{CN}\)
Tương tự: \(\Delta TAB~\Delta TCA\)\(\Rightarrow\frac{TA}{TC}=\frac{AB}{AC}\)
Do TA=TN nên \(\frac{NB}{NC}=\frac{AB}{AC}\)(1)
Lại có: ADKC là tứ giác nội tiếp \(\Rightarrow\widehat{BNA}=\widehat{BCA}=\widehat{DKA}\Rightarrow BN//KP\)
\(\Delta FPD~\Delta NBA\Rightarrow\frac{PF}{NB}=\frac{PD}{AB}\)(2)(bn tự CM)
\(\Delta DBP~\Delta ANC\Rightarrow\frac{PB}{NC}=\frac{PD}{AC}\)(3)(bn tự CM)
Từ (1);(2) và (3) suy ra đpcm
P/s: Bài làm dài quá mik làm biếng không check lại nên có thể có sai sót nha.
CCFCXD