Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Đề hay quá!)
Gọi \(X\) là trung điểm \(BC\). CM được \(DF,AI,MN\) đồng quy tại điểm ta gọi là \(K\).
Theo tính chất đường trung bình ta có \(MN\) song song \(AB\).
Do tam giác \(ABC\) vuông tại \(A\) cũng suy ra \(AB\) song song với \(IE\).
Áp dụng định lí Thales liên tục ta có:
\(\frac{AN}{IE}=\frac{MN}{MI}=\frac{KA}{KI}=\frac{AP}{ID}\).
Do \(ID=IE\) nên \(AN=AP\). Kết thúc chứng minh.
a) Trong tam giác ABC cóE là giao điểm 2 phân giác trong góc B và C nên AE là phân giác góc BAC
Khi đó AE và AD đều là phân giác trong của góc BAC
=> 3 điểm A,E,D thẳng hàng
b) Có: ACB+BCx =180
=> 1/2 ACB +1/2 BCx =90
=> DCB + BCE =90
=> DCE =90
Tương tự : DBE =90
Trong tứ giác BECD CÓ DBE +DCE =90+90=180
=> TỨ giác BECD nội tiếp
c) theo câu b thì tứ giác BECD nội tiếp nên
DCB =DEB ( 2 góc nội tiêp cung chắn cung BD)
Xét tam giác DIC và tam giác BIE có :
DCB=DEB (cmt)
DIC= BIE ( 2 góc đối đỉnh)
=> tam giác DIC đồng dạng với tam giác BIE
=>\(\frac{BI}{ID}\)=\(\frac{IE}{IC}\)
=> BI *IC= ID*IE
mình ghi lại câu a nhé
Vì E là giao điểm của 2 đường phân giác trong của góc B,C nên E cũng thuộc đường phân giac của góc A
=> AE là phân giác góc A
Vì D là giao điểm của 2 đường phân giác các góc ngoài của góc B,C nên ta có D cách đều 2 cạnh AB,AC
=> D thuộc đường phân giác góc A
=>AE,AD nhau
=> A,E,D thẳng hàng