K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M,N,P lần lượt là trung điểm các cạnh AB,CD,SA. Q là 1 điểm thuộc đoạn SP. a, Xác định thiết diện của hình chóp cắt bởi ( ∝) đi qua Q và song song với (SBN) b, Xác định thiết diện của hình chóp cắt bởi ( Ф) đi qua MN song song với (SAD) 2. Cho lăng trụ ABC.A'B'C'. Gọi M,N,P là trung trọng tâm các tam giác AA'B, CA'C', CBC' a, Xác định giao tuyến 2 mặt phẳng (ABC) và...
Đọc tiếp

1.Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M,N,P lần lượt là trung điểm các cạnh AB,CD,SA. Q là 1 điểm thuộc đoạn SP.
a, Xác định thiết diện của hình chóp cắt bởi ( ∝) đi qua Q và song song với (SBN)
b, Xác định thiết diện của hình chóp cắt bởi ( Ф) đi qua MN song song với (SAD)

2. Cho lăng trụ ABC.A'B'C'. Gọi M,N,P là trung trọng tâm các tam giác AA'B, CA'C', CBC'
a, Xác định giao tuyến 2 mặt phẳng (ABC) và (BA'C')
b, Chứng minh MN // (BA'C'), (MNP) // (BA'C')
c, Xác định thiết diện của lăng trụ khi cắt bởi mặt phẳng (MNP) Tính diện tích thiết diện biết tam giác BA'C' là tam giác đều cạnh a

3, Cho hình hộp ABCD.A'B'C'D' có tất cả các mặt là hình vuông cạnh a. Trên các cạnh AB,CC',C'D' và AA' lấy các điểm M,N,P,Q sao cho AM = C'N = C'P = AQ = x ( 0 <= x <= a)
a, Chứng minh M,N,P,Q đồng phẳng và Mp,Nq cắt nhau tại 1 điểm cố định
b, Chứng minh MNPQ đi qua 1 đường thẳng cố định
c, Dựng thiết diện của hình hộp khi cắt bởi (MNPQ). Tìm GTLN và GTNN của chu vi thiết diện

0
NV
5 tháng 4 2022

a.

\(\left\{{}\begin{matrix}BB'\perp\left(ABC\right)\Rightarrow BB'\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(ABB'A'\right)\)

\(\Rightarrow BC=d\left(C;\left(A'AB\right)\right)\)

\(S_{A'AB}=\dfrac{1}{2}S_{ABB'A'}=\dfrac{3a^2}{2}\)

\(\Rightarrow V_{C.A'AB}=\dfrac{1}{3}BC.S_{A'AB}=\dfrac{1}{3}.2a.\dfrac{3a^2}{2}=a^3\)

b.

Theo cmt, \(BC\perp\left(ABB'A'\right)\Rightarrow BC\perp AN\)

Mà \(\left\{{}\begin{matrix}A'C\perp\left(P\right)\\AN\in\left(P\right)\end{matrix}\right.\) \(\Rightarrow AN\perp A'C\)

\(\Rightarrow AN\perp\left(A'BC\right)\Rightarrow AN\perp A'B\)

c.

Ta có: \(AA'||BB'\Rightarrow d\left(B;AA'\right)=d\left(N;AA'\right)\)

\(\Rightarrow S_{A'AN}=S_{A'AB}\)

Lại có: \(CC'||BB'\Rightarrow CC'||\left(ABB'A'\right)\)

\(\Rightarrow d\left(C';\left(ABB'A'\right)\right)=d\left(M;\left(ABB'A'\right)\right)\)

\(\Rightarrow V_{A'AMN}=V_{CA'AB}=a^3\)

NV
5 tháng 4 2022

undefined

NV
23 tháng 12 2020

Hướng dẫn: 

Dễ dàng nhận ra A thuộc B'G (vì AB' là đường chéo của hbh mặt bên nên là 1 trung tuyến)

Gọi M, M' lần lượt là trung điểm BC và B'C'

=> (GOB') là (AMB')

(CA'O') là (CA'M')

Có B'M'CM là hình bình hành

A'M'MA cũng là hbh 

Suy ra 2 cặp đường thẳng song song và cắt nhau => đpcm