Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một cách giải khác:
Dựng tam giác đều EHF sao cho F nằm trên nửa mặt phẳng bờ BC có chứa A.
Khi đó: ^CEH = ^AEF (=600 - ^AEH). Kết hợp với EC=EA, EH=EF suy ra \(\Delta\)HEC = \(\Delta\)FEA (c.g.c)
=> CH = AF (2 cạnh tương ứng) hay BH = AF (Do BH=CH)
Ta có: ^IAF = 3600 - ^EAF - ^EAC - ^BAC - IAB = 3600 - 600 - 300 - ^ECH - ^BAC (^EAF=^ECH vì \(\Delta\)HEC = \(\Delta\)FEA)
= 2700 - 600 - ^BAC - ^ACB = 300 + ^ABC = ^IBA + ^ABC = ^IBH
Xét \(\Delta\)BIH và \(\Delta\)AIF có: IB = IA, BH = AF (cmt), ^IBH = ^IAF (cmt) => \(\Delta\)BIH = \(\Delta\)AIF (c.g.c)
Suy ra IH = IF (2 cạnh tương ứng). Mà EH = EF nên IE trung trực của HF.
Xét \(\Delta\)EHF đều có EI là trung trực của HF => EI là phân giác của ^HEF => ^IEH = ^HEF/2 = 300
Kết luận: ^IEH = 300.
Trên tia IH lấy điểm K sao cho HI=HK
Xét tam giác HIB và tam giác HKC có:
HI=HK (cách vẽ)
HB=HC ( H là trung điểm BC)
\(\widehat{H_1}=\widehat{H_2}\)( đối định )
=> \(\Delta HIB=\Delta HKC\)(c.g.c)
=> IB=CK mà IB=AI ( dễ tự chứng minh)
=> CK=AI (1)
\(\widehat{IAE}=\widehat{A_1}+\widehat{A_2}+\widehat{A_3}=30^o+\widehat{A_2}+60^o=90^o+\widehat{A_2}\)
\(\widehat{ECK}=\widehat{C_1}=360^o-\left(\widehat{C_2}+\widehat{C_3}+\widehat{C_4}\right)\)Vì \(\Delta HIB=\Delta HKC\)=> \(\widehat{C_2}=\widehat{HBI}\)=\(\widehat{B_1}+\widehat{B_2}=30^o+\widehat{B_1}\)
và \(\widehat{C_4}=60^o\)
=> \(\widehat{ECK}=\widehat{C_1}=360^o-\left(90^o+\widehat{B_1}+\widehat{C_3}_{ }\right)=90^o+\widehat{A_2}\)
=> \(\widehat{IAE}=\widehat{ECK}\)(2)
và AE= EC ( tam giác AEC đều) (3)
Từ (1), (2), (3)
=> \(\Delta IAE=\Delta KCE\)
=> IE=KE => tam giác IEK cân có EH là đường trung tuyến=> EH cũng là đường phân giác
\(\widehat{AEI}=\widehat{CEK}\)=> \(\widehat{IEK}=\widehat{IEC}+\widehat{CEK}=\widehat{IEC}+\widehat{AEI}=\widehat{AEC}=60^o\)
=> \(\widehat{IEH}=60^o:2=30^o\)
Gọi O là giao điểm DC và BE, I là giao điểm DC và AB
Ta có
góc DAB= góc EAC (=90)
góc BAC= góc BAC( góc chung)
-> góc DAB+ góc BAC= góc EAC+ góc BAC
-> góc DAC= góc BAE
Xét tam giác DAC và tam giác BAE ta có
AD=AB ( tam giác ABD vuông cân tại A)
AC=AE ( tam giác AEC vuông cân tại A)
góc DAC=góc BAE ( cmt)
-. tam giac DAC= tam giac BAE (c-g-c)
-> góc DAI= góc IBO ( 2 góc tương ứng)
ta có
góc DAI+ góc DIA=90 ( tam giác DAI vuông tại A)
góc DAI= góc IBO (cmt)
góc DIA= góc BIO ( 2 góc đối đỉnh)
--> góc BIO+góc IBO =90
Xét tam giác BIO ta có
góc BIO + góc IBO + góc BIO=180 ( tổng 3 góc trong tam giác)
90+ goc BIO=180
góc BIO=180-90=90
=> BE vuông góc DC tại O
Xét tam giác DBC ta có
M là trung điểm BD (gt)
P là trung điểm BC (gt)
-> MP la đường trung bình tam giác DBC
-> MP// DC và MP=1/2 DC
cmtt PN là đường trung bình tam giác BEC
-> PN//BE và PN=1/2BE
ta có
DC vuông góc BE tại O (cmt)
DC//MP (cmt)
-> MP vuông góc BE
mà BE// PN (cmt)
nên MP vuông góc PN tại P
--> tam giác MNP vuông tại P (1)
ta có
MP=1/2 DC (cmt)
PN=1/2BE (cmt)
DC=BE ( tam giac DAC = tam giac BAE)
--> MP=PN (2)
từ (1) và (2) suy ra tam giac MNP vuông cân tại P
no giải
có cách giải chx ạ?