Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu bạn làm được thì bạn hãy làm đi , tra mạng , và tham khảo ít thôi nhé
Xét (O) có
ΔBMC nội tiếp
BC là đường kính
Do đó: ΔBMC vuông tại M
Xét (O) có
ΔBNC nội tiếp
BC là đường kính
Do đo: ΔBNC vuông tại N
Xet ΔABC có
BN,CM là các đường cao
BN cắt CM tại H
Do đó; H là trực tâm
=>AH vuông góc với BC
a: Xét (O) có
ΔBNC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBNC vuông tại N
Xét (O) có
ΔBMC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBMC vuông tại M
Xét ΔABC có
BN là đường cao
CM là đường cao
BN cắt CM tại H
Do đó: AH\(\perp\)BC
Câu hỏi của Nhóc vậy - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo câu tương tự tại đây.
Với câu c, ta thấy \(sin\widehat{BAC}=\frac{\sqrt{2}}{2}\Rightarrow\widehat{BAC}=45^o\Rightarrow tan\widehat{BAC}=1\Rightarrow\frac{BC}{AH}=1\)
Vậy AH = BC.
b) Ta có : EA = EH ( gt )
Xét : tam giác MHA vuông tại M . có ME là trung tuyến
\(\Rightarrow ME=\frac{1}{2}AH\Rightarrow ME=EH\)
\(\Rightarrow\Delta MEH\)cân tại E
\(\Rightarrow\widehat{EMH}=\widehat{H_1}\left(1\right)\)
Ta lại có : \(OM=OC\left(=bk\right)\Rightarrow\Delta OMC\)cân tại O
\(\widehat{OMC}=\widehat{OCM}\left(2\right)\)
Mặt khác : Tam giác IHC vuông tại I => \(\widehat{ICM}+\widehat{H_1}=90^o\)
mà \(\widehat{H_1}=\widehat{H_2}\)( đối đỉnh ) \(\Rightarrow\widehat{ICM}+\widehat{H_2}=90^o\left(3\right)\)
Từ (1)(2) và (3) => \(\widehat{OMC}+\widehat{EHM}=90^o\)
mà \(\widehat{OME}=\widehat{OMC}+\widehat{EHM}=90^o\)
\(\Rightarrow ME\perp OM\)tại M
Vậy : ME là tiếp tuyến của đường tròn tâm O ( đpcm )
c: Theo câu b, ta được: H là tâm đường tròn ngoại tiếp ngũ giác DEKFO
OH vuông góc MN
=>MN là đường kính của (H)
=>HM=HN
a: Xét (O) có
ΔBDC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBDC vuông tại D
Xét (O) có
ΔBEC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBEC vuông tại E
a: Xét \(\left(O\right)\) có
\(\widehat{CNB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{CNB}=90^0\)
hay CM\(\perp\)AB
Xét \(\left(O\right)\) có
\(\widehat{BNC}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{BNC}=90^0\)
hay BN\(\perp\)AC
b: Xét ΔABC có
BN là đường cao ứng với cạnh AC
CM là đường cao ứng với cạnh AB
BN cắt CM tại H
Do đó: AH\(\perp\)BC