K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

ngủ đi 

7 tháng 5 2018

giúp đi mà

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

Tâm I là trung điểm của AH

20 tháng 5 2018

Ta có BOC=120o ;BKC =60o suy ra BOC +BKC =180 nên tứ giác BOCK ni tiếp đường tròn.

Ta có OB=OC=R suy ra OB= OC=> BKO= CKO  hay KO là phân giác góc BKC theo phần (a) KA

19 tháng 6 2023

               loading...

a, Xét tam giác vuông EBC vuông tại E và  CI = IB

 ⇒ IE = IC = IB (1) ( vì trong tam giác vuông trung tuyến ứng với cạnh huyền bằng \(\dfrac{1}{2}\) cạnh huyền)

Xét tam giác vuông BCF vuông tại F và IC =IB 

 ⇒IF = IC = IB (2) (vì trong tam giác vuông trung tuyến ứng với cạnh huyền bằng \(\dfrac{1}{2}\) cạnh huyền) 

Từ (1) và (2) ta có: 

IE = IF = IB = IC 

Vậy bốn điểm B, C, E, F cùng thuộc một đường tròn tâm I bán kính bằng \(\dfrac{1}{2}\) BC (đpcm)

b, Xét \(\Delta\)AFC và \(\Delta\)AEB có:

\(\widehat{CAF}\)  chung ; \(\widehat{AFC}\) = \(\widehat{AEB}\) = 900 

⇒ \(\Delta\)AFC  \(\sim\) \(\Delta\)AEB   (g-g)

⇒ \(\dfrac{AF}{AE}\) = \(\dfrac{AC}{AB}\) (theo định nghĩa hai tam giác đồng dạng)

⇒AB.AF = AC.AE (đpcm)

Xét tam giác vuông AEH vuông tại E và KA = KH 

⇒ KE = KH ( vì trong tam giác vuông trung tuyến ứng với cạnh huyền bằng \(\dfrac{1}{2}\) cạnh huyền)

\(\Delta\)EKH cân tại K ⇒ \(\widehat{KEH}\) = \(\widehat{EHK}\) 

\(\widehat{EHK}\) = \(\widehat{DHB}\) (vì hai góc đối đỉnh)

 ⇒ \(\widehat{KEH}\) = \(\widehat{DHB}\) ( tc bắc cầu) (3)

Theo (1) ta có: IE = IB ⇒ \(\Delta\) IEB cân tại I 

⇒ \(\widehat{IEB}\) = \(\widehat{IBE}\)  (4)

Cộng vế với vế của (3) và(4)

Ta có: \(\widehat{KEI}\) = \(\widehat{KEH}\) + \(\widehat{IEB}\) =  \(\widehat{DHB}\) + \(\widehat{IBE}\)  = \(\widehat{DHB}\) + \(\widehat{DBH}\)

        Vì tam giác DHB vuông tại D nên \(\widehat{DHB}\) + \(\widehat{DBH}\)  = 1800 - 900 = 900

 ⇒\(\widehat{KEI}\)  = 900

         IE \(\perp\) KE (đpcm)

 

 

 

 

 

 

 

1) Xét tứ giác BCEF có 

\(\widehat{BEC}=\widehat{BFC}\left(=90^0\right)\)

mà hai góc này cùng nhìn cạnh BC dưới những góc bằng nhau

nên BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

2) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AC=AF\cdot AB\)(Đpcm)

23 tháng 5 2020

Đéo biết

1 tháng 5 2019

câu c nè: mik ns ý chính nhé

h bạn kẻ tiếp tuyến tại A

chứng minh đc AO vuông góc vs MN

=> OA vuông góc vs EF

do OA cố định

=> đường thẳng qua A vuông góc vs EF luôn đi qua 1 điểm cố định

do câu a va b bn làm đc rồi nên mik nghĩ bn cx hok giỏi rồi nên mik làm tắt nha 

10 tháng 5 2017

a, Ta có AKB =AEB  (vì cùng chắn cung AB của đường tròn ngoại tiếp tam giác AEB)

Mà ABE =AEB  (tính chất đối ứng) suy ra AKB= ABE (1)

AKC= AFC (vì cùng chắn cung AC của đường tròn ngoại tiếp tam giác AFC)

ACF= AFC  (tính chất đối x