Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh ΔABF ~ ΔACE
\(\odot\) Ta có: FA = FB (F ∈ đường trung trực của AB)
⇒ ΔFAB cân tại F
Tương tự, ta cũng có ΔEAC cân tại E
\(\odot\) Mặt khác:
\(\widehat{FBA}=\widehat{BAD}\) (AD // BF, 2 góc so le trong)
\(\widehat{BAD}=\widehat{CAD}\) (AD là tia phân giác của \(\widehat{BAC}\))
\(\widehat{CAD}=\widehat{ECA}\) (AD // CE, 2 góc so le trong)
\(\Rightarrow\widehat{FBA}=\widehat{ECA}\)
\(\odot\) Suy ra ΔFAB cân tại F và ΔEAC cân tại E có \(\widehat{FBA}=\widehat{ECA}\)
⇒ ΔFAB ~ ΔEAC
b) Chứng minh AD, BE, CF đồng quy
\(\odot\) Gọi G là giao điểm của BE và CF. Ta sẽ chứng minh A, G, D thẳng hàng.
\(\odot\) Theo định lí Thales: BF // EC (do cùng song song với AD)
\(\Rightarrow\dfrac{FG}{GC}=\dfrac{BF}{CE}\)
\(\odot\) Mà:
\(\dfrac{BF}{CE}=\dfrac{AB}{AC}\) (ΔFAB ~ ΔEAC)
\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\) (AD là đường phân giác của ΔABC)
\(\odot\) Suy ra \(\dfrac{FG}{GC}=\dfrac{BD}{CD}\)
Theo định lí Thales đảo ⇒ GD // BF
mà AD // BF (gt) nên \(AD\equiv GD\)
⇒ A, G, D thẳng hàng
⇒ đpcm
c) Chứng minh A, P, G, Q, F đồng viên
\(\odot\) Ta có: \(\widehat{FAG}=\widehat{EAG}\)
mà \(\widehat{EAG}=\widehat{QGA}\) (2 góc so le trong, QG // AE)
\(\Rightarrow\widehat{FAG}=\widehat{QGA}\)
mà FAGQ là hình thang
⇒ FAGQ là hình thang cân
⇒ FAGQ nội tiếp (1)
\(\odot\) Mặt khác: ECGP nội tiếp
\(\Rightarrow\widehat{CEP}=\widehat{PGF}\) (cùng bù \(\widehat{PGC}\))
mà \(\widehat{CEP}=\widehat{FQP}\) (2 góc so le trong, BF // CE)
\(\Rightarrow\widehat{PGF}=\widehat{FQP}\)
⇒ FQGP nội tiếp (2)
\(\odot\) Từ (1) và (2) ⇒ Ngũ giác AFQGP nội tiếp
⇒ đpcm
1) Do DN // AB nên ^DNC = ^BAC (Đồng vị). Mà ^BAC = ^DBC nên ^DNC = ^DBC => Tứ giác BNCD nội tiếp
Suy ra 5 điểm B,O,N,C,D cùng thuộc 1 đường tròn => ^BND = ^BOD = ^COD = ^CND
Ta có: DN // AB => ^BND = ^ABN. ^CND = ^NAB => ^NBA = ^NAB => \(\Delta\)ANB cân tại N (đpcm).
2) Ta có: ^DCM = ^DNB = ^DNC => \(\Delta\)DMC ~ \(\Delta\)DCN => DC2 = DM.DN. Dễ thấy: DC2 = DI.DA
Suy ra: DM.DN = DI.DA => Tứ giác AIMN nội tiếp => ^IMK = ^IAN = ^IBC => \(\Delta\)MIK ~ \(\Delta\)MKB (g.g)
=> KM2 = KI.KB. Ta lại có: ^KDI = ^IAB = ^KBD => \(\Delta\)IKD ~ \(\Delta\)DKB (g.g) => KD2 = KI.KB
Từ đó: KM2 = KD2 => KM = KD = DM/2. Do G là trung điểm KD nên \(\frac{GM}{GK}=3\) (1)
Gọi giao điểm của tia AD và tia ND là R. Theo hệ quả ĐL Thales: \(\frac{QB}{QM}=\frac{AB}{MR}\) (2)
Nếu ta gọi giao của PI với BC là V, theo phép vị tự thì I là trung điểm của PV. Từ đó suy ra: GM=GR
Mà GD = GK = GM/3 nên DK = MR/3. Lại áp dụng hệ quả ĐL Thales: \(\frac{IK}{IB}=\frac{DK}{AB}=\frac{MR}{3AB}\) (3)
Từ (1),(2),(3) suy ra: \(\frac{GM}{GK}.\frac{QB}{QM}.\frac{IK}{IB}=3.\frac{AB}{MR}.\frac{MR}{3AB}=1\). Theo đk đủ của ĐL Mélelaus thì 3 điểm Q,I,G tương ứng nằm trên các cạnh BM,BK,KM của \(\Delta\)BKM thẳng hàng (đpcm).
3) Gọi (HCS) cắt (O) tại điểm thứ hai là T. E là giao điểm của OD và BC.
Ta thấy: ^TBD = ^TCB = ^THS = ^THD (Góc tạo bởi tiếp tuyến và dây + Góc nội tiếp) => Tứ giác BHTD nội tiếp
Từ đó: 5 điểm B,H,E,T,D cùng thuộc 1 đường tròn => ^BTD = ^BED = 900
Mặt khác: ^DTE = 1800 - ^DBE = 1800 - ^BAC = ^BTC => ^DTE = ^BTC => ^BTD = ^CTE
Suy ra: ^CTE = 900 => T nằm trên đường tròn (CE) cố định. Mà T cũng thuộc (O) cố định.
Nên T là điểm cố định. Do đó: Dây CT của đường tròn (HCS) cố định
=> Tâm L của (HCS) luôn nằm trên đường trung trực của đoạn CT cố định (đpcm).
a) Gọi BH cắt (O) tại S khác B. Qua tính chất quen thuộc của trực tâm ta thấy H,S đối xứng nhau qua AC.
Do đó ^ASE = ^AHE = 900 (Vì HE // BC, AH vuông góc BC) hay SE vuông góc với AS (1)
Ta có AD là đường kính của (O) => ^ASD chắn nửa (O) => SD vuông góc với AS (2)
Từ (1) và (2) suy ra SE trùng SD hay DE cắt (O) tại S. Như vậy BH,DE cắt nhau trên (O) (đpcm).
b) Tương tự câu a, CH,DF cũng cắt nhau tại 1 điểm trên (O), gọi nó là T
Dễ thấy AH = AS = AT (Tính chất đối xứng). Mà AH,AS,AT lần lượt là khoảng cách từ A đến EF,DE,DF
Nên A chính là tâm bàng tiếp góc D của \(\Delta\)DEF (A nằm ngoài \(\Delta\)DEF) (đpcm).
c) Gọi IH cắt CF tại G. Ta sẽ chỉ ra rằng B,G,E thẳng hàng. Thật vậy:
Ta có FA,FI là phân giác trong và ngoài của ^DFE => FI vuông góc AB => FI // CH
Từ đó \(\Delta\)IGF ~ \(\Delta\)HGC (g.g) => \(\frac{GI}{GH}=\frac{IF}{HC}\)(3)
Mặt khác ^IFE = ^FAH (Cùng phụ ^AFH) = ^HCB. Tương tự ^IEF = ^HBC
Suy ra \(\Delta\)EIF ~ \(\Delta\)BHC (g.g) => \(\frac{IF}{HC}=\frac{IE}{HB}\)(4)
Từ (3) và (4), kết hợp với ^GIE = ^GHB suy ra \(\Delta\)GEI ~ \(\Delta\)GBH (c.g.c)
=> ^IGE = ^HGB. Vì I,G,H thẳng hàng nên kéo theo B,G,E thẳng hàng
Vậy thì BE,CF,IH cắt nhau tại G (đpcm).
Bạn ơi, chứng minh cho mình câu b: AH=AS=AT với được không ạ
a) Ta dễ thấy ^ABF = ^BAF = ^BAD = ^CAD = ^ACE = ^CAE. Suy ra \(\Delta\)ABF ~ \(\Delta\)ACE (g.g) (đpcm).
b) Gọi BE cắt CF tại G. Áp dụng hệ quả ĐL Thales, kết hợp với \(\Delta\)ABF ~ \(\Delta\)ACE ta có:
\(\frac{GC}{GF}=\frac{CE}{FB}=\frac{AC}{AB}\). Mà \(\frac{AC}{AB}=\frac{DC}{DB}\)(ĐL đường phân giác trong tam giác) nên \(\frac{GC}{GF}=\frac{DC}{DB}\)
Do đó GD // BF // CE (ĐL Thales đảo). Lại có AD // BF // CE nên A,G,D thẳng hàng
Vậy thì AD,BE,CF cắt nhau tại G (đpcm).
c) Chú ý GQ // AE suy ra ^AGQ = ^GAE = ^GAF, đồng thời có AG // QF. Suy ra AFQG là hình thang cân (1)
Mặt khác BF // CE dẫn đến ^GFQ = ^GCE = ^GPQ. Từ đây bốn điểm P,Q,F,G cùng thuộc một đường tròn (2)
Từ (1) và (2) suy ra các điểm A,P,G,Q,F cùng thuộc một đường tròn (đpcm).