Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BDH+góc BFH=180 độ
=>BDHF nội tiếp
góc BFC=góc BEC=90 dộ
=>BFEC nội tiếp
b: góc FEB=góc BAD
góc DEB=góc FCB
mà góc BAD=góc FCB
nên góc FEB=góc DEB
=>EB là phân giác của góc FED
c: Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC=góc AEF
=>Ax//FE
=>FE vuông góc OA
=>OA vuông góc IK
Giải:
Câu a)
- 2 tam giác vuông ∆ADC và ∆BEC, có góc ADC = góc BEC = 90°, và 2 tam giác vuông này có chung góc C. Từ đây, suy ra => tam giác ∆ADC và tam giác ∆BEC đồng dạng (theo dạng tam giác đồng dạng: góc - góc - góc). Vì ∆ADC và ∆BEC đồng dạng nhau, nên ta có tỷ lệ: DC:EC = AC:BC.
Từ đây, suy ra: DC:AC = CE:BC (1).
Vì tam giác ∆ABC và ∆EDC có chung góc C, và vì kết quả ở (1), nên ta suy ra: ∆ABC và ∆EDC đồng dạng. Từ đây, ta biết được: góc DEC = ABC và góc EDC = góc BAC.
Mà, góc AED + góc DEC = 180° => góc AED + góc ABC = 180° => tứ giác ABDE nội tiếp được một đường tròn (Theo tính chất của tứ giác nội tiếp: 2 góc đối bù nhau).
Câu b)
Chứng minh tương tự như câu a), ta sẽ có:
∆DEC đồng dạng ∆DBF đồng dạng ∆AEF (1)
Từ (1), ta suy ra: góc AEF = góc DEC, mà góc BEA = góc BEC = 90°, nên ta tính được góc BEF = góc BED, suy ra => BE là đường phân giác góc DEF.
Giải tương tự như trên, ta sẽ chứng minh được AD, CF lần lượt là đường phân giác của các góc FDE và góc DFE.
Từ đó, suy ra => H là tâm đường tròn nội tiếp tam giác DEF.
a) Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
nên BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Tâm I của đường tròn ngoại tiếp tứ giác BCEF là trung điểm của BC
bạn tham khảo ở đây nha,bài này mình từng làm rồi
https://hoc24.vn/cau-hoi/881cho-tam-giac-abc-nhon-noi-tiep-duong-tron-o-cac-duong-cao-adbecf-cat-nhau-tai-ha-chung-minh-tu-giac-bcef-noi-tiep-va-xac-dinh-tam-i-cua-duong-tron-ngoai-tiep-tu-giacb-duong-thang-ef-cat-duon.1092906662181
a) Ta có: \(\angle BFC=\angle BEC=90\Rightarrow BCEF\) nội tiếp
Gọi I là trung điểm BC
Ta có: \(\Delta BFC\) vuông tại F có I là trung điểm BC \(\Rightarrow IF=IB=IC\)
\(\Delta BEC\) vuông tại E có I là trung điểm BC \(\Rightarrow IE=IB=IC\)
\(\Rightarrow IE=IF=IB=IC\Rightarrow I\) là tâm (BCEF)
b) Xét \(\Delta MKB\) và \(\Delta MCT:\) Ta có: \(\left\{{}\begin{matrix}\angle MKB=\angle MCT\left(BKTCnt\right)\\\angle TMCchung\end{matrix}\right.\)
\(\Rightarrow\Delta MKB\sim\Delta MCT\left(g-g\right)\Rightarrow\dfrac{MK}{MC}=\dfrac{MB}{MT}\Rightarrow MK.MT=MB.MC\left(1\right)\)
Xét \(\Delta MFB\) và \(\Delta MCE:\) Ta có: \(\left\{{}\begin{matrix}\angle MFB=\angle MCE\left(BCEFnt\right)\\\angle EMCchung\end{matrix}\right.\)
\(\Rightarrow\Delta MFB\sim\Delta MCE\left(g-g\right)\Rightarrow\dfrac{MF}{MC}=\dfrac{MB}{ME}\Rightarrow MB.MC=MF.ME\left(2\right)\)
Ta có: \(\angle AFC=\angle ADC=90\Rightarrow AFDC\) nội tiếp
Tương tự \(\Rightarrow ABDE,AEHF\) nội tiếp
Ta có: \(\angle FEI=\angle FEB+\angle BEI=\angle FAH+\angle EBI\) (\(\Delta EBI\) cân tại I)
\(=\angle FAH+\angle EAD=\angle BAC=\angle BDF\) (AFDC nội tiếp)
\(\Rightarrow FDIE\) nội tiếp \(\Rightarrow\angle MDF=\angle MEI\)
Xét \(\Delta MFD\) và \(\Delta MIE:\) Ta có: \(\left\{{}\begin{matrix}\angle MDF=\angle MEI\\\angle EMIchung\end{matrix}\right.\)
\(\Rightarrow\Delta MFD\sim\Delta MIE\left(g-g\right)\Rightarrow\dfrac{MF}{MI}=\dfrac{MD}{ME}\Rightarrow MD.MI=MF.ME\left(3\right)\)
Từ (1),(2) và (3) \(\Rightarrow MD.MI=MK.MT\)
c) Từ C kẻ đường thẳng song song với NS cắt AB,AD lần lượt tại J và L
Vì \(CJ\parallel NS\) và \(NS\bot IH\Rightarrow CJ\bot IH\) mà \(CD\bot HL\)
\(\Rightarrow I\) là trực tâm tam giác CHL \(\Rightarrow LI\bot HC\) mà \(AJ\bot CH\)
\(\Rightarrow IL\parallel BJ\) mà I là trung điểm BC \(\Rightarrow L\) là trung điểm CJ
mà \(CJ\parallel NS\) \(\Rightarrow G\) là trung điểm NS (dùng Thales để biến đổi thôi,bạn tự chứng minh nha)
a) Xét tứ giác BFHD có
\(\widehat{BFH}\) và \(\widehat{BDH}\) là hai góc đối
\(\widehat{BFH}+\widehat{BDH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
làm câu d) kìa daugau