Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCKB vuông tại K và ΔCHI vuông tại H có
góc KCB chung
=>ΔCKB đồng dạng với ΔCHI
=>CK/CH=CB/CI
=>CK*CI=CH*CB=CA^2
b: Xét ΔBHD vuông tại H và ΔBKC vuông tại K có
góc KBC chung
=>ΔBHD đồng dạng với ΔBKC
=>BH/BK=BD/BC
=>BD*BK=BH*BC=BA^2
c: BA^2=BD*BK
BA=BM
=>BM^2=BD*BK
=>ΔBMD vuông tại M
=>góc BMD=90 độ
d: SỬa đề: EA/EB*NB/NC*FC/FA
=NA/NB*NB/NC*NC/NA
=1
a: Ta có: \(\widehat{BIH}+\widehat{IBH}=90^0\)
mà \(\widehat{AID}=\widehat{BIH}\)
nên \(\widehat{AID}+\widehat{DBC}=90^0\)
mà \(\widehat{ADI}+\widehat{ABD}=90^0\)
và \(\widehat{DBC}=\widehat{ABD}\)
nên \(\widehat{AID}=\widehat{ADI}\)
hay ΔAID cân tại I
a) Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔBHA\(\sim\)ΔBAC(g-g)
Suy ra: \(\dfrac{BA}{BC}=\dfrac{BH}{BA}\)
hay \(BA^2=BH\cdot BC\)
b) Xét ΔCHI vuông tại H và ΔCKB vuông tại K có
\(\widehat{ICH}\) chung
Do đó: ΔCHI\(\sim\)ΔCKB(g-g)
Suy ra: \(\dfrac{CH}{CK}=\dfrac{CI}{CB}\)
hay \(CH\cdot CB=CK\cdot CI\)
a,Ta có ΔABC cân ở góc A => góc ABC=góc ACB =180(độ)−BAC2(1)
Ta có BD=CE(gt);AB=AC(gt)
mà AB+BD=AD và AC+CE=AE
=> AD=AE
=>ΔADE cân tại A ( Có hai góc bằng nhau)
=>góc ADE= góc AED=(180 độ - DAE) :2 (2)
Từ (1) và (2) => góc ABC= góc ADE=góc ACB=góc AED
mà góc ABC và góc ADE ở vị trí đồng vị
=>BC // DE(đpcm)
b)ta có góc ABC= góc MBD (đối đỉnh )
góc ACB= góc NCE( đối đỉnh )
mà Góc ABC=Góc ACB => góc MBD= góc NCE
Xét hai tam giác vuông ΔBMD và ΔCNE
có BD=CE (gt)
góc MBD= góc NCE (c/m trên)
=>ΔBMD=ΔCNE(Cạnh huyền - Góc nhọn)
=> DM=EN(Hai cạnh tương ứng)
c) Gọi giao điểm của AM và BI là E
giao điểm của AN và CI là F
Vì ΔBMD=ΔCNE( chứng minh trên ) =>BM=CN( Hai cạnh tương ứng)
Ta có : Góc ABC= Góc ACB ( gt)
mà Góc ABC + Góc ABM=180 độ ( kề bù)
và Góc ACB+góc ACN= 180 độ ( kề bù)
=>Góc ABM=góc ACN
Xét ΔABM VÀ ΔACN có:
AB=AC(gt)
Góc ABM=Góc ACN(cmt)
BM=CM ( cmt)
=> ΔABM=ΔACN(c−g−c)
=> Góc AMB=Góc ANC (hai góc tương ứng )
=> ΔAMN Cân ở A ( có hai góc bằng nhau) (đpcm)
D,(hơi dài )
ta có tam giác AMN cân ở A=> AM=AN( hai cạnh bên) (3)
Xét hai tam giác vuông Tam giác EMB và tam giác FCN có:
Góc EMB=góc FNC (cmt)
MB=CN(cmt)
=> tam giác EMB= tam giác FNC ( cạnh huyền -góc nhọn)
=>EM=FN(hai cạnh tương ứng ) (4)
Ta có (3) (4) mà AE+EM=AM và AF+FN=AN
=> AE=AF
Xét hai tam giác vuông tam giác AEI và tam giác AFI có
AI cạnh chung
AE=AF(cmt)
=> tam giác AEI = Tam giác AFI (cạnh huyền-cạnh góc vuông)
=>Góc AIE=Góc AIF( góc tương ứng ) (10)
ta có góc EBM+MBD=góc EBD= góc ABI (đối đỉnh)(5)
góc FCN+NCE= Góc FCE= góc ACI( đối đỉnh )(6)
mà góc EBM= góc FCN (cmt)(7)
góc MDB=góc NCE(gt) (8)
từ (5)(6)(7)(8)=> góc ABI = góc ACI (9)
từ (9) (10)=> góc BAI=góc CAI ( tổng 3 góc của một tam giác ) (đpcm)
Chúc bạn học giỏi nha Thiên Yết >.<
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
các bạn giúp mik với!!!!