K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HP
26 tháng 6 2021
S1=CK.AB/2;S2=HK.AB/2
=>S1.S2=\(\dfrac{AB^2.\left(CK.HK\right)}{4}\)
=>\(\sqrt{S1.S2}=\dfrac{AB.\sqrt{CK.HK}}{2}\)
ta có góc KBH= góc KCA
=> tam giac khb dong dang tam giac akc (g.g)
hk/ak=bk/ck=>ck.hk=ak.bk
mk^2=ak.bk(theo he uoc luong tam giac)
=>mk=\(\sqrt{ck.hk}\)
=>\(\sqrt{S1.s2}=\dfrac{AB.MK}{2}=S\left(DPCM\right)\)
KT
19 tháng 8 2018
bạn ktra lại đề nhé
đáng nhẽ là: \(S=\sqrt{S_1.S_2}\) chứ
đúng thế thì vào câu hỏi tương tự có nhé
28 tháng 3 2020
đây link đó: https://olm.vn/hoi-dap/detail/188057031061.html
Chúc bạn hok tốt!!!
Với S1 = SABC và S2 = SABH . Ta có các công thức tính diện tích:
\(S_1=\frac{CK.AB}{2};\) \(S_2=\frac{HK.AB}{2}\)
\(\Rightarrow S_1.S_2=\frac{AB^2.\left(CK.HK\right)}{4}\Rightarrow\sqrt{S_1.S_2}=\frac{AB.\sqrt{CK.HK}}{2}\)(*)
Dễ thấy: ^KBH = ^KCA (Do cùng phụ với ^BAC) => \(\Delta\)HKB ~ \(\Delta\)AKC (g.g)
\(\Rightarrow\frac{HK}{AK}=\frac{BK}{CK}\Rightarrow CK.HK=AK.BK\)
Lại có: \(\Delta\)AMB vuông ở M có đường cao MK \(\Rightarrow AK.BK=MK^2\)(Hệ thức lg trg \(\Delta\)vuông)
Từ đó => \(CK.HK=MK^2\Leftrightarrow\sqrt{CK.HK}=MK\); thế vào (*) thì được:
\(\sqrt{S_1.S_2}=\frac{AB.MK}{2}=S_{AMB}=S\). Vậy có ĐPCM.