Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc A chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF và AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF và AE/AB=AF/AC
b: XétΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc A chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AB*AF=AC*AE và AB/AE=AC/AF
b: Xét ΔABC và ΔAEF có
AB/AE=AC/AF
góc BAC chung
=>ΔABC đồng dạng với ΔAEF
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)
nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
Phần c) trước hết ta chứng minh HD là phân giác của \(\widehat{FID}\)
Xét \(\Delta DBH\)và \(\Delta EBC\)có
\(\widehat{BDH}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{CBE}\)chung
\(\Delta DBH\approx\Delta EBC\left(g.g\right)\)
\(\Rightarrow\frac{BD}{BE}=\frac{BH}{BC}\)(2 cặp cạnh tương ứng tỉ lệ)
\(\Rightarrow\frac{BD}{BH}=\frac{BE}{BC}\)(tính chất của tỉ lệ thức)
Xét \(\Delta BDE\)và \(\Delta BHC\)có:
\(\widehat{CBE}\)chung
\(\frac{BD}{BH}=\frac{BE}{BC}\)(chứng minh trên)
\(\Delta BDE\approx\Delta BHC\left(c.g.c\right)\)
\(\Rightarrow\widehat{BED}=\widehat{BCH}\)(2 góc tương ứng)
\(\Rightarrow\widehat{BED}=\widehat{BCF}\)
Ta có:
\(\widehat{BED}+\widehat{DEC}=90^0\left(=\widehat{BEC}\right)\)
\(\Rightarrow\widehat{BCF}+\widehat{DEC}=90^0\)
Và vì \(\Delta FBC\)vuông tại F
\(\Rightarrow\widehat{BCF}+\widehat{FBC}=90^0\)(vì phu nhau)
Do đó :\(\widehat{DEC}=\widehat{FBC}\)(cùng phụ với \(\widehat{BCF}\))
\(\Rightarrow\widehat{DEC}=\widehat{FBD}\)
Chứng minh tương tự, ta được: \(\widehat{BFD}=\widehat{ECD}\)
Xét \(\Delta BFD\)và \(\Delta ECD\)có:
\(\widehat{BFD}=\widehat{ECD}\)(chứng minh trên)
\(\widehat{FBD}=\widehat{CED}\)(chứng minh trên)
\(\Rightarrow\Delta BFD\approx\Delta ECD\left(g.g\right)\)
\(\Rightarrow\widehat{BDF}=\widehat{EDC}\)(2 góc tương ứng)