K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc ABC+góc ACB=180-60=120 độ

=>góc IBC+góc ICB=60 độ

=>góc BIC=120 độ

b: góc BIE=góc DIC=60 độ

Xét ΔEBIvà ΔFBI có

BE=BF

góc EBI=góc FBI

BI chung

Do đo: ΔEBI=ΔFBI

=>góc EIB=góc FIB=60 độ

=>góc FIC=60 độ

=>góc FIC=góc DIC

Xét ΔFCI và ΔDCI có

góc FIC=góc DIC

IC chung

góc ICF=góc ICD

Do đó; ΔFCI=ΔDCI

28 tháng 3 2017

khong kho lam chac ban tu lam duoc chu

28 tháng 3 2017

k bạn ơi, giải giúp mik câu c đi bạn. mik giải đc 2 câu trên r

25 tháng 1 2019

A B C D E I F M

a) Xét trong tam giác BIC từ định lí tổng 3 góc của một tam giác bằng 10 độ

=>  \(\widehat{BIC}=180^o-\widehat{IBC}-\widehat{ICB}\)\(=180^o-\frac{1}{2}\widehat{ABC}-\frac{1}{2}\widehat{ACB}\)( tính chất phân giác)

\(=180^o-\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)\)

Mà xét trong tam giác ABC cũng từ định lí tổng ba góc của một tam giác bằng 180 độ

=> \(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{BCA}=180^o-60^o=120^o\)

=> \(\widehat{BIC}=180^o-\frac{1}{2}.120^o=120^o\)

b) Xét tam giác BEI và tam giác BFI

Hai tam giác này bằng nhau theo trường hợp góc cạnh góc (tự chứng minh)

=> \(\widehat{EIB}=\widehat{FIB}\)

Mà \(\widehat{EIB}=\widehat{DIC}=180^o-\widehat{BIC}=60^o\)

=> \(\widehat{BIF}=60^o\Rightarrow\widehat{CIF}=\widehat{BIC}-\widehat{BIF}=120^o-60^o=60^o\)

=> \(\widehat{CID}=\widehat{CIF}\)

Xét Tam giác IDC và tam giác IFC có: 

IC chung

\(\widehat{CID}=\widehat{CIF}\)

\(\widehat{FIC}=\widehat{DIC}\)

=> \(\Delta CID=\Delta CIF\)(g-c-g)

16 tháng 1 2016

góc ADC = 80 độ

góc BIC = 130 độ 

16 tháng 1 2016

goc ADC=80

goc BIC=110

30 tháng 11 2016

A B 60 C o I O D E x y

a)\(\Delta ABC\)có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\) (tổng 3 góc trong tam giác)

=>\(60^o+\widehat{ABC}+\widehat{ACB}=180^o\)=>\(\widehat{ABC}+\widehat{ACB}=120^o\)

BD là tia phân giác của góc ABC => \(\widehat{ABD}=\widehat{DBC}=\frac{1}{2}.\widehat{ABC}\)

CE là tia phân giác của góc ACB => \(\widehat{ACE}=\widehat{ECB}=\frac{1}{2}.\widehat{ACB}\)

=>\(\widehat{DBC}+\widehat{ECB}=\frac{1}{2}.\widehat{ABC}+\frac{1}{2}.\widehat{ACB}=\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=\frac{1}{2}.120=60^o\)

\(\Delta BOC\) có: \(\widehat{DBC}+\widehat{BOC}+\widehat{ECB}=180^o\) (tổng 3 góc trong tam giác)

=>\(\widehat{BOC}+60^o=180^o\Rightarrow\widehat{BOC}=120^o\)

b) Góc ngoài tại đỉnh B của tam giác ABC kề bù với góc ABC <=>\(\widehat{ABC}+\widehat{CBx}=180^o\)

Góc ngoài tại đỉnh C của tam giác ABC kề bù với góc ACB<=>\(\widehat{ACB}+\widehat{BCy}=180^o\)

=>\(\widehat{ABC}+\widehat{CBx}+\)\(\widehat{ACB}+\widehat{BCy}=360^o\)=>\(\widehat{CBx}+\widehat{BCy}+120^o=360^o\)

=>\(\widehat{CBx}+\widehat{BCy}=240^o\)

BI là tia phân giác của góc CBx => \(\widehat{BCI}=\widehat{IBx}=\frac{1}{2}.\widehat{CBx}\)

CI là tia phân giác của góc BCy => \(\widehat{BCI}=\widehat{ICy}=\frac{1}{2}.\widehat{BCy}\)

=>\(\widehat{CBI}+\widehat{BCI}=\frac{1}{2}.\widehat{CBx}+\frac{1}{2}.\widehat{BCy}=\frac{1}{2}\left(\widehat{CBx}+\widehat{BCy}\right)=\frac{1}{2}.240^o=120^o\)

\(\Delta BCI\) có: \(\widehat{CBI}+\widehat{BCI}+\widehat{BIC}=180^o\) (tổng 3 góc trong tam giác)

=>\(120^o+\widehat{BIC}=180^o\Rightarrow\widehat{BIC}=60^o\)

Vậy ............................

22 tháng 3 2020

ưeauủnvgbhrjekdlxmjckfỉoekskãdjcfủiedskxcjfr

5 tháng 3 2021

a.Ta có:

ˆBID=12ˆBIC=12(180o−ˆBCI−ˆIBC)=12(180o−12ˆBCA−12ˆABC)=12(180o−12(ˆBCA+ˆABC)=12(180o−12(180o−ˆBAC)=60oBID^=12BIC^=12(180o−BCI^−IBC^)=12(180o−12BCA^−12ABC^)=12(180o−12(BCA^+ABC^)=12(180o−12(180o−BAC^)=60o 

Lại có :

ˆNIB=ˆIBC+ˆICB

=1/2ˆABC+1/2ˆACB

=1/2(ˆABC+ˆACB)

=1/2(180o−ˆBAC)=60o

NIB^=IBC^+ICB^

=1/2ABC^+1/2ACB^

=1/2(ABC^+ACB^

=1/2(180o−BAC^)=60o

=>ˆNIB=ˆBID

=>ΔNIB=ΔDIB(g.c.g)

=>BN=BD(cmt)

b.Chứng minh tương tự câu a

→CD=CM

→BN+CM=BD+CD=BC→đpcm

10 tháng 1 2018

A B C D E N I

a) Ta thấy \(\widehat{B}+\widehat{C}=180^o-60^o=120^o\)

\(\Rightarrow\widehat{IBC}+\widehat{ICB}=\frac{\widehat{B}+\widehat{C}}{2}=60^o\)

Vậy thì \(\widehat{BIC}=180^o-\widehat{IBC}-\widehat{ICB}=120^o\)

b) Ta có ngay \(\widehat{EIB}=\widehat{IBC}+\widehat{ICB}=60^o=\widehat{BIN}\)

Vậy thì \(\Delta EBI=\Delta NBI\left(g-c-g\right)\Rightarrow IE=IN\)

Tương tự ID = IN nên IE = IN = ID.

22 tháng 2 2020

a, Trong tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 độ
=> góc ABC + góc ACB  =180 độ - góc BAC = 180 độ - 60 độ = 120 độ
Mà BD và CE lần lượt là phân giác của góc ABC ; ACB nên 
120 độ = 2.góc IBC + 2.góc ICB = 2.(góc IBC + góc ICB)
=> góc IBC + góc ICB = 120 độ : 2 = 60 độ
Trong tam giác IBC có : góc IBC + góc ICB + góc BIC = 180 độ
=> góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ