Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF
Hình vn tự vẽ hen :)
Cmr: Tam giác ABC có góc nhọc BI ta nối góc BI vào CK
Vẽ một hình tam giác với điểm là A góc là H ta có hình tam giác AH
Vậy suy ra:
=> Ta có 2 hình tam giác vuông của 1 hình ABC (Tam giác nhỏ)
(1) AHB (2)BID ta có:
BD=AB (gt)
=> K là một trung điểm ta đặt hai trung điểm có:
KIB=KCB (trung điểm góc) (đcmlg)
Tam giác AHB = ACD ( cạnh huyền của tam giác ABC)
Xét hai góc KIB và KCB ( Cùng phụ góc hai ) Mik đã đánh giấu
Nên ta còn:AC=AB
Qua chứng minh trên ta rút ra kết luận
(BC + HC +IB + KCB =EK (đpcm)
~Study well~ :)
a) Ta có:
\(\left\{{}\begin{matrix}BH\perp AC\\KC\perp AC\end{matrix}\right.\) ⇒ \(BH\text{//}KC\)
\(\left\{{}\begin{matrix}CH\perp AB\\BK\perp AB\end{matrix}\right.\) ⇒ \(CH\text{//}BK\)
\(Xét\) \(tứ\) \(giác\) \(BKCH\) \(có:\) \(\left\{{}\begin{matrix}BH\text{//}KC\\CH\text{//}BK\end{matrix}\right.\)
⇒ Tứ giác \(BKCH\) là hình hình hành. Mà M là trung điểm của đường chéo BC
⇒ \(\left\{{}\begin{matrix}H,M,K_{ }thẳng_{ }hàng\\HM=MK\end{matrix}\right.\)
Xét \(\Delta AHK\) có: \(\left\{{}\begin{matrix}AI=IK\left(gt\right)\\HM=MK\left(cmt\right)\end{matrix}\right.\)
⇒ \(IM\) là đường trung bình của \(\Delta AHK\)
⇒ \(IM=\dfrac{1}{2}AH\) \(\left(ĐPCM\right)\)
c)
Ta có:
\(\dfrac{S_{\Delta HBC}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HD.BC}{\dfrac{1}{2}.AD.BC}=\dfrac{HD}{AD}\)
\(\dfrac{S_{\Delta HAC}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HE.AC}{\dfrac{1}{2}.BE.AC}=\dfrac{HE}{BE}\)
\(\dfrac{S_{\Delta HBA}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HF.AB}{\dfrac{1}{2}.CF.AB}=\dfrac{HF}{CF}\)
⇒ \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=\dfrac{S_{\Delta HBC}+S_{\Delta HAC}+S_{\Delta HAB}}{S_{\Delta ABC}}=\dfrac{S_{\Delta ABC}}{S_{\Delta ABC}}\)
⇔ \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\) \(\left(ĐPCM\right)\)
1) Ta có: BH vuông góc với AC
CK vuông góc với AC
=> BH//CK
Chứng minh tương tự ta có: CH//Bk
Xét tứ giác BHCK có: BH//CK
CH//BK
=> Tứ giác BHCK là hbh
Có M là trung điểm của BC=> M là trung điểm của HK=>M,H,K thẳng hàng
2.gọi HI cắt BC tại J
Xét tam giác HIK có: J là trung điểm của HI
M là trung điểm của HK
=> JM là đường trung bình trong tam giác HIK
=> IK//MJ hay IK//BC
Xét tam giác BHJ và tam giác BIJ có;
HJ=JI
góc BJH=góc BJI=90
BJ chung
=> Tam giác BHJ = tam giác BIJ
=> Góc HBJ= góc IBJ
Mà góc HBJ= góc BCK( do BH//CK)
Xét tứ giác BIKC có:
KI//BC
góc IBC= góc KCB
=>Tứ giác BIKC là hình thang cân
3.Xét tứ giác GHCK có: GK//HC (doBK//HC)
=> Tứ giác GHCK là hình thang
Để GHCK là hình thang cân<=>góc GHC= góc KCH(1)
mà GHC+HCB=90
KCH+HCA=90
=> (1)<=> góc HCB=góc HCA=> CH là phân giác của góc ACB
Xét tam giác ABC có : CH là phân giác của góc ACB
CH là đường cao trong tam giác ABC
=> Tam giác ABC cân tại C
Vậy tứ giác GHCK là hình thang cân<=> Tam giác ABC cân tại C