K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2023

a) - Xét tam giác ABD và tam giác AED, có:
    + Chung AD
    + góc BAD = góc EAD (AD là tia phân giác của góc BAC)
    + AB = AE (gt)
=> tam giác ABD = tam giác AED (cgc)

5 tháng 5 2023

câu b) hình như điều cần chứng minh nhầm rồi hay sao ý

19 tháng 7 2019

a, Xét tam giác ABD và AED cs:

AB=AE(gt)

góc BAD=EAD(p.g)

AD: cạnh chung

=> tam giác ABD=AED(c.g.c)

b, từ a=> góc ABD=AED(2 góc t/ứng)

Xét tam giác ABC và AEF cs:

góc ABD=AED(cmt)

AB=AE(gt)

góc A: góc chung

=> tam giác ABC=AEF(g.c.g)

c, từ b=> AC=AF(2 cạnh t/ứng)

Xét tam giác FAM và CAM cs:

AF=AC(cmt)

góc FAM=CAM (gt)

AM: cạnh chung

=> tam giác FAM=CAM(c.g.c)

=>FM=MC(2 cạnh t/ứng) 

=> DM là đường trung tuyến của đt FC

Xét tam giác DFC cs:

DM là đường trung tuyến 

CN là đường trung tuyến ( vì DN=NF)

Mà DM và CN giao nhau tại G

=> G là trọng tâm của tam giác DFC

=> CG/GN=2( t/c trọng tâm trg tam giác)

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0

a: Xét ΔABD và ΔAED có 

AB=AE
\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

b: Xét ΔBDF và ΔEDC có 

\(\widehat{BDF}=\widehat{EDC}\)

DB=DE

\(\widehat{DBF}=\widehat{DEC}\)

Do đó: ΔBDF=ΔEDC

17 tháng 5 2022

giúp mk câu c vs d ấy ạ