K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017


Lại còn phải cm định lý à, xem lại lớp 7. Trong tam giác, 3 đường cao của tam giác cùng đi qua 1 điểm

17 tháng 4 2017

Mình biết rồi. Nhưng giờ phải chứng minh giao điểm H của các đường cao của tam giác ABC giao điểm là đường phân giác trong của tam giác DEF. Bạn đọc lại đề đi.

31 tháng 5 2023

Ta cần chứng minh H là trực tâm của tam giác ASM. Với mục đích này, ta sẽ sử dụng tính chất của hình chữ nhật.

Vì M là trung điểm BC, ta có BM = MC. Do đó, SM là đường trung trực của BC.

Vì EF ⊥ BE và CF, nên EF song song với đường BC (vì BE // CF). Do đó, S nằm trên đường trung trực của BC.

Vì H là giao điểm của AD và BE, ta có AH  ⊥ BC và BH ⊥ AC. Do đó, AH // SM và BH // SM.

Khi đó, ta suy ra được rằng tứ giác ABSH là hình chữ nhật (do có 2 cặp cạnh đối nhau là song song và bằng nhau).

Do AS là đường chéo của hình chữ nhật ABSH, nên H là trực tâm của tam giác ASM.

Vậy, H là trực tâm của tam giác ASM. 

4 tháng 1 2017

 a)tg AEB và tg AFC có 
-^AEB=^AFC 
-^BEA=^FAC 
=>tg AEB đồng dạng tg AFC 
=>AE/AF=AB/AC 
=>AE. AC=AF.AB 
b) AE/AF=AB/AC
=>AE/AB= AF/AC 
tgAEF và tg ABC có 
-^EAF=^BAC 
- AE/AB= AF/AC 
=>tg AEF đồng dạng tg ABC 
c) tg AEB đồng dạng tg AFC 
=>^ABE=^ ACF 
hay ^FBH=^ECH 
tg FHB và tg EHC c ó 
-^FBH=^ECH 
-^FHB=^EHC 
=> tg FHB và tg EHC đồng dạng 
=>FH/EH=HB/HC 
tg FHE và tg BHC có 
- FH/EH=HB/HC 
-^FHE=^BHC(2 g óc đối đỉnh) 
=> tg FHE và tg BHC đồng dạng 
tg ABD và CBF có 
-^ADB=^CFB(=90 độ) 
-^ABD=^CBF 
=> tg ABD và CBF đồng dạng 
=>AB/BC=BD/BF 

=>BF.AB=BC.BD 
Tương tự chứng minh:CE.CA=CD.BC 
=> BF.AB+CE.CA =BC.BD+CD.BC=BC(BD.CD)=BC^2

4 tháng 1 2017

k hiểu j lun ák