K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2017

​​tớ làm hơi qua loa một chút phần nào có kí hiệu t là tớ hơi tắt chút xíu nhé ( ko mún viết nhìu )

hình cậu tự vẽ nhá !

a)xét tam giác ABD và tam giác ACE ta có : góc a chung ; góc BDA=góc CEA =90 độ suy ra tam giác ABD đồng dạng với tam giác ACE theo trường hợp góc-góc

b) theo a) ta có tam giác ABD đồng dạng với tam giác ACE\(\Rightarrow\)\(\frac{AD}{AE}=\frac{AB}{AC}\)(t)

xét tam giác AED và tam giác ACB ta có góc a chung ; (t) ta suy ra tam giác AED đồng dạng với tam giác acb theo trường hợp cạnh-góc-cạnh suy ra gócAED=gócACB=40độ

 nhớ k cho mk nha!

14 tháng 4 2017

a, Xét \(\Delta\)ABD và \(\Delta\)ACE có:

           \(\widehat{A}\)  chung

     \(GócADB=GócAEC\) 

Vậy \(\Delta ABD\omega\Delta ACE\)

17 tháng 5 2023

mình cần gâps huhu

 

Xét ΔABD vuông tại D và ΔACE vuông tại E có 

\(\widehat{BAD}\) chung

Do đó: ΔABD∼ΔACE

Suy ra: AB/AC=AD/AE

=>AD/AB=AE/AC

Xét ΔADE và ΔABC có

AD/AB=AE/AC

\(\widehat{DAE}\) chung

Do đó: ΔADE∼ΔABC

Suy ra: \(\widehat{AED}=\widehat{ACB}=48^0\)

a: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có

góc EHB=góc DHC

=>ΔHEB đồng dạng với ΔHDC

b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC

=>AD*AC=AB*AE; AD/AB=AE/AC

c: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc A chung

=>ΔADE đồng dạng với ΔABC

=>góc AED=góc ACB

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc BAD chung

=>ΔABD đồng dạng với ΔACE

b: ΔABD đồng dạng với ΔACE

=>AD/AE=AB/AC

=>AD/AB=AE/AC

Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

=>ΔADE đồng dạng với ΔABC

c: góc A=90-30=60 độ

ΔADE đồng dạng với ΔABC

=>S ADE/S ABC=(AD/AB)^2=1/4

=>S ABC=120cm2

27 tháng 2 2022

a. -Xét △BEH và △CDH có: 

\(\widehat{BEH}=\widehat{CDH}=90^0\)

\(\widehat{BHE}=\widehat{CHD}\)(đối đỉnh)

\(\Rightarrow\)△BEH∼△CDH (g-g).

\(\Rightarrow\dfrac{BH}{CH}=\dfrac{EH}{DH}\).

-Xét △HED và △HBC có:

\(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)

\(\dfrac{BH}{CH}=\dfrac{EH}{DH}\left(cmt\right)\)

\(\Rightarrow\)△HED∼△HBC (c-g-c).

b. -Ta có: \(\widehat{AED}+\widehat{DEC}=90^0\) (kề phụ).

\(\widehat{DBC}+\widehat{DCB}=90^0\) (△DBC vuông tại D).

Mà \(\widehat{DEC}=\widehat{DBC}\)(△HED∼△HBC)

\(\Rightarrow\)\(\widehat{AED}=\widehat{DCB}\)

-Xét △AED và △ACB có:

\(\widehat{AED}=\widehat{ACB}\) (cmt)

\(\widehat{BAC}\) là góc chung.

\(\Rightarrow\)△AED∼△ACB (g-g).

 

27 tháng 2 2022

c. -Có: \(\widehat{EAC}=45^0\) (gt) ; △AEC vuông tại E (AB⊥CE tại E).

\(\Rightarrow\)△AEC vuông cân tại E.

\(\Rightarrow AE=AC\sqrt{2}\)

-Ta có: △AED∼△ACB (cmt)

\(\Rightarrow\dfrac{ED}{BC}=\dfrac{AE}{AC}=\dfrac{AC\sqrt{2}}{AC}=\sqrt{2}\)

\(\Rightarrow\dfrac{ED}{\sqrt{2}}=\sqrt{2}\)

\(\Rightarrow ED=2\)

 

24 tháng 3 2023

A B B C D E H

Xét \(\Delta AEC\&\Delta ADB\\ \) có:

\(\widehat{A}=\widehat{A}\\ \widehat{E}=\widehat{D}=90^o\\ \Rightarrow\Delta AEC\sim\Delta ADB\left(đpcm\right)\)

b) vì\(\Delta AEC\sim\Delta ADB\Leftrightarrow\dfrac{AB}{AE}=\dfrac{AC}{AD}\Leftrightarrow\dfrac{3}{AE}=\dfrac{5}{2}\Rightarrow AE=\dfrac{3\cdot2}{5}=1.2cm\)

 

24 tháng 3 2023

loading...  

a) Xét ∆ADB và ∆ACE có:

∠ADB = ∠ACE = 90⁰

∠A chung

⇒ ∆ADB ∽ ∆ACE (g-g)

b) Do ∆ADB ∽ ∆ACE (cmt)

⇒ AD/AC = AB/AE

⇒ AE = AB.AC/AD

= 2.3/5

= 1,2 (cm)